SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Mechanics, EXT2 M1 EQ-Bank 6

The acceleration, \(a\) ms\(^{-2}\), of a particle that starts from rest and moves in a straight line is described by  \(a=1+v\), where \(v\) ms\(^{-1}\) is its velocity after \(t\) seconds.

Determine the velocity of the particle after \( \log _e(e+1) \) seconds.   (3 marks)

Show Answers Only

\(e\ \text{ms}^{-1}\)

Show Worked Solution

\(\dfrac{dv}{dt}=1+v\ \ \Rightarrow \ \dfrac{dt}{dv} = \dfrac{1}{1+v} \)

\(t= \displaystyle{\int \dfrac{1}{1+v}\ dv} = \log_e{(1+v)}+c \)

\(\text{When}\ \ t=0, v=0\ \ \Rightarrow \ c=0 \)

\(t\) \(=\log_e(1+v) \)  
\(1+v\) \(=e^t\)  
\(v\) \(=e^t-1\)  

 
\(\text{At}\ \ t=\log_e(e+1): \)

\(v=e^{\log_e{(e+1)}}-1 = e+1-1=e\ \text{ms}^{-1} \)

Filed Under: Motion Without Resistance Tagged With: Band 4, smc-1060-06-a=f(v)

Mechanics, EXT2 M1 2013 SPEC2 18*

A particle moves in a straight line such that its acceleration is given by  `a = sqrt(v^2 - 1)` , where `v` is its velocity and `x` is its displacement from a fixed point.

Given that  `v = sqrt2`  when  `x = 0`, find the velocity `v` in terms of `x`.   (4 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

`v = sqrt(1 + (1 + x)^2)`

Show Worked Solution
`v(dv)/(dx)` `= sqrt(v^2 – 1)`
`(dv)/(dx)` `= sqrt(v^2 – 1)/v`
`(dx)/(dv)` `= v/sqrt(v^2 – 1)`
`x` `=int v/sqrt(v^2 – 1)\ dv`

 
`text(Integration by substitution:)`

`text(Let)\ \ u=v^2-1`

`(du)/(dv) = 2v \ => \ 1/2 du = v\ dv`

`x` `= 1/2 int u^(- 1/2) \ du`
  `= 1/2 * 2 u^(1/2) + c`
  `= sqrt(v^2 – 1) + c`

 

 
`text(When)\ \ x=0, \ v = sqrt2\ \ =>\ \ c = −1`

`x` `= sqrt(v^2 – 1) -1`
`v^2` `= 1 + (1 + x)^2`

 
`:. v = sqrt(1 + (1 + x)^2)`

Filed Under: Motion Without Resistance Tagged With: Band 4, smc-1060-06-a=f(v), smc-1060-35-Other function

Mechanics, EXT2 M1 2017 SPEC2 17 MC

The acceleration,  `a\ text(ms)^(-2)`, of a particle moving in a straight line is given by  `a = v^2 + 1`,  where  `v`  is the velocity of the particle at any time `t`. The initial velocity of the particle when at origin O is  `2\ text(ms)^(-1)`.

The displacement of the particle from O when its velocity is  `3\ text(ms)^(-1)`  is

  1. `log_e(2)`
  2. `1/2 log_e(10/3)`
  3. `1/2 log_e(2)`
  4. `1/2 log_e(5/2)`
Show Answers Only

`C`

Show Worked Solution
`v* (dv)/(dx)` `= v^2 + 1`
`(dv)/(dx)` `= (v^2 + 1)/v`
`(dx)/(dv)` `= v/(v^2 + 1)`
`x` `= int (v/(v^2 + 1))\ dv`
  `=1/2 ln(v^2 + 1)+c`

 
`text(When)\ \ x=0, \ v=2:`

`c=-1/2 ln5`

 
`text(Find)\ \ x\ \ text(when)\ \ v=3:`

`x` `= 1/2ln(9 + 1) – 1/2 ln5`
  `= 1/2 ln (10/5)`
  `= 1/2 ln 2`

 
`=>   C`

Filed Under: Motion Without Resistance Tagged With: Band 5, smc-1060-06-a=f(v), smc-1060-10-Polynomial

Mechanics, EXT2 M1 2015 SPEC1 6

The acceleration `a` ms¯² of a body moving in a straight line in terms of the velocity `v` ms¯¹ is given by  `a = 4v^2.`

Given that  `v = e`  when  `x = 1`, where `x` is the displacement of the body in metres, find the velocity of the body when  `x = 2.`  (4 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

`e^5`

Show Worked Solution
`v* (dv)/(dx)` `= 4v^2`
`(dv)/(dx)` `= 4v`
`(dx)/(dv)` `= 1/(4v)`
`x` `=int 1/(4v) \ dv`
  `=1/4 ln (4v)+c`

 
`text(When)\ \ x=1, v=e`

`1` `=1/4 ln(4e)+c`  
`:.c` `=1-1/4 ln(4e)`  

 
`text(Find)\ \ v\ \ text(when)\ \ x=2:`

COMMENT: Strong log and exponential calculation ability required here.

`1/4 ln (4v)+1-1/4 ln(4e)` `= 2`
`1/4 ln(4v)` `= 1/4 ln (4e)+1`
`ln(4v)` `= ln(4e)+4`
`e^(ln4v)` `= e^(ln(4e) +4)`
`4v` `= e^(ln(4e)) * e^4`
`4v` `=4e xx e^4`
`:.v` `=e^5`

Filed Under: Motion Without Resistance Tagged With: Band 4, smc-1060-06-a=f(v), smc-1060-10-Polynomial

Mechanics, EXT2 M1 2020 HSC 11c

A particle starts at the origin with velocity 1 and acceleration given by

`a = v^2 + v`,

where `v` is the velocity of the particle.

Find an expression for `x`, the displacement of the particle, in terms of `v`.   (3 marks)

--- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

`x= ln \ | frac{v + 1}{2} |`

Show Worked Solution
`a` `= v^2 + v`
`v · frac{dv}{dx}` `= v^2 + v`
`frac{dv}{dx}` `= v + 1`
`frac{dx}{dv}` `= frac{1}{v + 1}`
`x` `= int frac{1}{v + 1}\ dv`
  `= ln \ | v + 1 | + c`

 
`text{When} \ \ x = 0 , \ v = 1`

`0 = ln \ 2 + c`

`c = -ln \ 2`

`therefore \ x` `= ln \ | v + 1| – ln \ 2`
  `= ln \ | frac{v + 1}{2} |`

Filed Under: Motion Without Resistance Tagged With: Band 3, smc-1060-02-Motion as f(x), smc-1060-06-a=f(v), smc-1060-10-Polynomial

Copyright © 2014–2025 SmarterEd.com.au · Log in