SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Mechanics, EXT2* M1 2019 HSC 13d

The point  `O`  is on a sloping plane that forms an angle of 45° to the horizontal. A particle is projected from the point  `O`. The particle hits a point  `A`  on the sloping plane as shown in the diagram.
 


 

The equation of the line  `OA`  is  `y = -x`. The equations of motion of the particle are

`x = 18t`

`y = 18 sqrt(3t) - 5t^2,`

where  `t`  is the time in seconds after projection. Do NOT prove these equations.

  1. Find the distance  `OA`  between the point of projection and the point where the particle hits the sloping plane.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. What is the size of the acute angle that the path of the particle makes with the sloping plane as the particle hits the point  `A`?  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `(324(sqrt 2 + sqrt 6))/5\ text(units)`
  2. `30^@`
Show Worked Solution
i.    `x` `= 18t`
  `y` `= 18 sqrt 3 t – 5t^2`

 
`text(Particle hits slope when)\ \ y = -x`

`18 sqrt 3 t – 5t^2` `= -18t`
`5t^2 – 18t – 18 sqrt3 t` `= 0`
`t(5t – 18 – 18 sqrt 3)` `= 0`
`5t – 18 – 18 sqrt 3` `= 0`
`5t` `= 18 + 18 sqrt 3`
`t` `= (18 + 18 sqrt 3)/5`

 
`text(When)\ t = (18 + 18 sqrt 3)/5,`

`x = 18 xx ((18 + 18 sqrt 3)/5)`

`text{Using Pythagoras (isosceles Δ):}`

`OA` `= sqrt(2 xx 18^2 xx((18 + 18 sqrt 3)/5)^2)`
  `= sqrt 2 xx 18 xx ((18 + 18 sqrt 3)/5)`
  `= (324(sqrt 2 + sqrt 6))/5\ text(units)`

 

ii.    `x` `= 18t => dot x = 18`
  `y` `= 18 sqrt 3 t – 5t^2 => dot y = 18 sqrt 3 – 10t`

 
`text(When)\ \ t = (18 + 18 sqrt 3)/5,`

`dot y` `= 18 sqrt 3 – 10 ((18 + 18 sqrt 3)/5)`
  `= 18 sqrt 3 – 36 – 36 sqrt 3`
  `= -18 sqrt 3 – 36`
  `= -18(sqrt 3 + 2)`

 

`text(Find angle with the horizontal at impact:)`

♦ Mean mark part (ii) 39%.
 

 

`tan theta` `= (18(sqrt 3 + 2))/18`
  `= sqrt 3 + 2`
`theta` `= tan^(-1)(sqrt 3 + 2)`
  `= 75^@`

 
`:.\ text(Angle made with the slope)`

`= 75 – 45`

`= 30^@`

Filed Under: Projectile Motion Tagged With: Band 4, Band 5, smc-1062-10-Range/Time of Flight, smc-1062-50-Angle of Trajectory/Impact, smc-1062-70-Sloped Landing

Mechanics, EXT2* M1 2014 HSC 14a

The take-off point `O` on a ski jump is located at the top of a downslope. The angle between the downslope and the horizontal is  `pi/4`.  A skier takes off from `O` with velocity `V` m s−1 at an angle `theta` to the horizontal, where  `0 <= theta < pi/2`.  The skier lands on the downslope at some point `P`, a distance `D` metres from `O`.
 

2014 14a
 

The flight path of the skier is given by

`x = Vtcos theta,\ y = -1/2 g t^2 + Vt sin theta`,      (Do NOT prove this.)

where  `t`  is the time in seconds after take-off.

  1. Show that the cartesian equation of the flight path of the skier is given by
     
         `y =  x tan theta - (gx^2)/(2V^2) sec^2 theta`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Show that  
     
         `D = 2 sqrt 2 (V^2)/(g) cos theta (cos theta + sin theta)`.   (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  3. Show that  
     
         `(dD)/(d theta) = 2 sqrt 2 (V^2)/(g) (cos 2 theta - sin 2 theta)`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  4. Show that `D` has a maximum value and find the value of `theta` for which this occurs.   (3 marks)

    --- 9 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `text(Proof)\ \ text{(See Worked Solutions)}`
  4. `text(Proof)\ \ text{(See Worked Solutions)}`
Show Worked Solution

i.  `text(Show)\ \ y = x tan theta – (gx^2)/(2V^2) sec^2 theta`

`x` `= Vt cos theta`
`t` `= x/(V cos theta)\ \ \ …\ text{(1)}`

`text(Subst)\ text{(1)}\ text(into)\ y = -1/2 g t^2 + Vt sin theta`

`y` `= -1/2 g (x/(Vcostheta))^2 + V sin theta (x/(Vcostheta))`
  `= (-gx^2)/(2V^2 cos^2 theta) + x * (sin theta)/(cos theta)`
  `= x tan theta – (gx^2)/(2V^2) sec^2 theta\ \ \ text(… as required.)`

 

ii.  `text(Show)\ D = 2 sqrt 2 (V^2)/g\ cos theta (cos theta + sin theta)`

♦♦ Mean mark 28%
MARKER’S COMMENT: The key to finding `P` and solving for `D` is to realise you need the intersection of the Cartesian equation in (i) and the line `y=–x`.

`text(S)text(ince)\ P\ text(lies on line)\ y = -x`

`-x` `=x tan theta – (gx^2)/(2V^2) sec^2 theta`
`-1` `=tan theta – (gx)/(2V^2) sec^2 theta`
`(gx)/(2V^2) sec^2 theta` `= tan theta + 1`
`x (g/(2V^2))` `=(sin theta)/(cos theta) * cos^2 theta + 1 * cos^2 theta`
`x` `=(2V^2)/g\ (sin theta cos theta + cos^2 theta)`
  `=(2V^2)/g\ cos theta (cos theta + sin theta)`

 

`text(Given that)\ \ cos(pi/4)` `= x/D = 1/sqrt2`
`text(i.e.)\ \ D` `= sqrt 2 x`

 
`:.\ D = 2 sqrt 2 (V^2)/g\ cos theta (cos theta + sin theta)`

`text(… as required.)`

 

iii.  `text(Show)\ (dD)/(d theta) = 2 sqrt 2 (V^2)/g\ (cos 2 theta – sin 2 theta)`

`D` `= 2 sqrt 2 (V^2)/g\ (cos^2 theta + cos theta sin theta)`
`(dD)/(d theta)` `= 2 sqrt 2 (V^2)/g\ [2cos theta (–sin theta) + cos theta cos theta + (– sin theta) sin theta]`
  `= 2 sqrt 2 (V^2)/(g) [(cos^2 theta – sin^2 theta) – 2 sin theta cos theta]`
  `= 2 sqrt 2 (V^2)/g\ (cos 2 theta – sin 2 theta)\ \ \ text(… as required)`

 

iv.  `text(Max/min when)\ (dD)/(d theta) = 0`

♦ Mean mark 47%
IMPORTANT: Note that students can attempt every part of this question, even if they couldn’t successfully prove earlier parts.
`2 sqrt 2 (V^2)/g\ (cos 2 theta – sin 2 theta)` `= 0`
`cos 2 theta – sin 2 theta` `= 0`
`sin 2 theta` `= cos 2 theta`
`tan 2 theta` `= 1`
`2 theta` `= pi/4`
`theta` `= pi/8`
`(d^2D)/(d theta^2)` `= 2 sqrt 2 (V^2)/g\ [-2 sin 2theta – 2 cos 2 theta]`
  `= 4 sqrt 2 (V^2)/g\ (-sin 2 theta – cos 2 theta)`

 

`text(When)\ \ theta = pi/8:`

`(d^2 D)/(d theta^2)` `= 4 sqrt 2 (V^2)/g\ (- sin (pi/4) – cos (pi/4))`
  `= 4 sqrt 2 (V^2)/g\ (- 1/sqrt2 – 1/sqrt2) < 0`
  ` =>\ text(MAX)`

 

`:.\ D\ text(has a maximum value when)\ theta = pi/8`

Filed Under: Projectile Motion, Projectile Motion EXT1 Tagged With: Band 3, Band 4, Band 5, smc-1062-10-Range/Time of Flight, smc-1062-40-Initial Angle/Speed, smc-1062-70-Sloped Landing, smc-1062-80-Cartesian

Copyright © 2014–2025 SmarterEd.com.au · Log in