Let `f(x) = x^3-3x^2 + kx + 8`, where `k` is a constant.
Find the values of `k` for which `f(x)` is an increasing function. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `f(x) = x^3-3x^2 + kx + 8`, where `k` is a constant.
Find the values of `k` for which `f(x)` is an increasing function. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`k>3`
`f(x)` | `= x^3-3x^2 + kx + 8` |
`f^{′}(x)` | `= 3x^2-6x + k` |
`f(x)\ text(is increasing when)\ \ f^{′}(x) > 0`
`=> 3x^2-6x + k > 0`
`f^{′}(x)\ text(is always positive)`
`=> f^{′}(x)\ text(is a positive definite.)`
`text(i.e. when)\ \ a > 0\ text(and)\ Delta < 0`
`a=3>0`
`Delta = b^2-4ac`
`:. (-6)^2-(4 xx 3 xx k)` | `<0` |
`36-12k` | `<0` |
`12k` | `>36` |
`k` | `>3` |
`:.\ f(x)\ text(is increasing when)\ \ k > 3.`
Evaluate `lim_(x->2) ((x-2)(x+2)^2)/(x^2-4)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`4`
`lim_(x ->2) ((x-2)(x+2)^2)/(x^2-4)`
`=lim_(x->2) ( (x -2)(x+2)^2)/( (x-2)(x+2)`
`=lim_(x->2) (x+2)`
`=4`