How many distinct solutions are there to the equation \(\cos 5 x+\sin x=0\) for \(0 \leq x \leq 2 \pi\) ?
- 5
- 6
- 9
- 10
Aussie Maths & Science Teachers: Save your time with SmarterEd
By factorising, or otherwise, solve `2sin^3x + 2sin^2x - sinx - 1 = 0` for `0 <= x <= 2pi`. (3 marks)
`x = pi/4, (3pi)/4, (5pi)/4, (3pi)/2, (7pi)/4`
`2sin^3x + 2sin^2x – sinx – 1 = 0`
| `2sin^2x (sinx + 1) – (sinx + 1)` | `= 0` |
| `(2sin^2x – 1)(sinx + 1)` | `= 0` |
| `2sin^2 x` | `= 1` | `sinx =` | `= -1` |
| `sin^2x` | `= 1/2` | ||
| `sinx` | `= ± 1/sqrt2` |
`:. x = pi/4, (3pi)/4, (5pi)/4, (3pi)/2, (7pi)/4`
Given that `cos (theta - phi) = 3/5` and `tan theta tan phi = 2`, find `cos(theta + phi)`. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
`-1/5`
`cos(theta+phi)= cos theta cos phi – sin theta sin phi`
`cos theta cos phi + sin theta sin phi = 3/5\ \ …\ (1)`
| `(sin theta sin phi)/(cos theta cos phi)` | `=2` | |
| `sin theta sin phi` | `= 2 cos theta cos phi\ \ …\ (2)` |
`text{Substitute (2) into (1):}`
| `cos theta cos phi + 2 cos theta cos phi` | `= 3/5` |
| `3 cos theta cos phi` | `= 3/5` |
| `cos theta cos phi` | `= 1/5` |
`text(Substitute)\ \ cos theta cos phi=1/5\ \ text{into (1):}`
| `1/5 + sin theta sin phi` | `= 3/5` |
| `sin theta sin phi` | `= 2/5` |
| `:. cos(theta + phi)` | `= cos theta cos phi – sin theta sin phi` |
| `= 1/5 – 2/5` | |
| `= -1/5` |
Solve for `x`, given that
`x sin(x) sec(2x) = 0,\ \ 0<=x<=2pi` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x = 0, \ pi\ \ text(or)\ \ 2pi`
| `xsin(x)sec(2x)` | `= (xsin(x))/(cos(2x))=0` |
`text(Find)\ \ x\ \ text(that satisfies:)`
`x = 0\ \ text(and)\ \ cos(2x) != 0 \ => \ x=0`
`text(or,)`
`sin(x) = 0\ \ text(and)\ \ cos(2x) != 0 \ => \ x=pi, \ 2pi`
`:. x = 0, \ pi\ \ text(or)\ \ 2pi`
A billboard of height `a` metres is mounted on the side of a building, with its bottom edge `h` metres above street level. The billboard subtends an angle `theta` at the point `P`, `x` metres from the building.
Use the identity `tan (A - B) = (tan A - tan B)/(1 + tanA tanB)` to show that
`theta = tan^(-1) [(ax)/(x^2 + h(a + h))]`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`text(Proof)\ \ text{(See Worked Solutions)}`
`text(Consider angles)\ \ A and B\ \ text(on the graph:)`
`text(Show)\ \ theta = tan^(-1) [(ax)/(x^2 + h(a + h))]`
| `tan A` | `= (a + h)/x` |
| `tan B` | `= h/x` |
| `tan (A – B)` | `= ((a + h)/x – h/x)/(1 + ((a + h)/x)(h/x)) xx (x^2)/(x^2)` |
| `= (x(a + h) – xh)/(x^2 + h(a + h))` | |
| `= (ax)/(x^2 + h(a + h)` |
| `text(S)text(ince)\ \ theta` | `= A – B` |
| `theta` | `= tan^(-1) [(ax)/(x^2 + h(a + h))]\ \ \ text(… as required.)` |
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `sin (5x + 4x) + sin (5x-4x) = 2 sin(5x) cos(4x)`
| `text(LHS)` | `= sin (5x) cos (4x)-sin(4x) cos (5x) + sin (5x) cos (4x)+ sin (4x) cos (5x)` |
| `= 2 sin (5x) cos (4x)\ \ text(… as required)` |
ii. `int sin (5x) cos (4x)\ dx`
`= 1/2 int 2 sin (5x) cos (4x)\ dx`
`= 1/2 int sin (5x + 4x) + sin (5x-4x)\ dx`
`= 1/2 int sin (9x) + sin (x)\ dx`
`= 1/2 [-1/9 cos(9x)-cos(x)] + c`
`= -1/18 cos(9x)-1/2 cos(x) + c`
It can be shown that `sin 3 theta = 3 sin theta - 4 sin^3 theta` for all values of `theta`. (Do NOT prove this.)
Use this result to solve `sin 3 theta + sin 2 theta = sin theta` for `0 <= theta <= 2pi`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`theta = 0, pi/3, pi, (5pi)/3, 2pi\ \ \ text(for)\ \ \ 0 <= theta <= 2 pi`
`text(Substitute)\ \ sin 3 theta = 3 sin theta – 4 sin^3 theta`
`text(into)\ \ sin 3 theta + sin 2 theta = sin theta,`
| `3 sin theta – 4 sin^3 theta + sin 2 theta` | `= sin theta` |
| `2 sin theta – 4 sin^3 theta + 2 sin theta cos theta` | `= 0` |
| `2 sin theta [1 – 2 sin^2 theta + cos theta]` | `= 0` |
| `2 sin theta [1 – 2(1 – cos^2 theta) + cos theta]` | `= 0` |
| `2 sin theta [ 1 – 2 + 2 cos^2 theta + cos theta]` | `= 0` |
| `2 sin theta [2 cos^2 theta + cos theta – 1]` | `= 0` |
| `2 sin theta (2 cos theta – 1)(cos theta + 1)` | `= 0` |
`2 sin theta = 0`
`=> theta = 0, pi, 2pi`
| `2 cos theta – 1` | `= 0` |
| `cos theta` | `= 1/2` |
`=> theta = pi/3, (5pi)/3`
| `cos theta + 1` | `= 0` |
| `cos theta` | `= -1` |
`=> theta=pi`
`:.\ theta = 0, pi/3, pi, (5pi)/3, 2pi\ \ \ \ (0 <= theta <= 2 pi)`
--- 3 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Show)\ \ cos(A\ – B) = cosA cosB (1 + tanA tanB)`
| `text(RHS)` | `= cosA cosB (1 + (sinA sinB)/(cosA cosB))` |
| `= cosA cos B + sinA sin B` | |
| `= cos(A – B)\ text(… as required)` |
ii. `text(Given)\ \ tanA tanB = -1`
| `cos (A – B)` | `= cosA cosB (1\ – 1)` |
| `cos (A – B)` | `= 0` |
| `A – B` | `= cos^(-1) 0` |
| `= pi/2, (3pi)/2, …` |
`text(S)text(ince)\ \ \ 0 < B < pi/2\ \ text(and)\ \ \ B < A < pi,`
`=> A\ – B = pi/2`