Given \(t=\tan \dfrac{x}{2}\), prove that \(\dfrac{\sec x+\tan x}{\sec x-\tan x}=\left(\dfrac{1+t}{1-t}\right)^2\) (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Given \(t=\tan \dfrac{x}{2}\), prove that \(\dfrac{\sec x+\tan x}{\sec x-\tan x}=\left(\dfrac{1+t}{1-t}\right)^2\) (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\operatorname{LHS}\) | \( =\dfrac{\sec x+\tan x}{\sec x-\tan x}\) | |
\( =\dfrac{\frac{1+t^2}{1-t^2}+\frac{2 t}{1-t^2}}{\frac{1+t^2}{1-t^2}-\frac{2 t}{1-t^2}} \times \dfrac{1-t^2}{1-t^2}\) | ||
\( =\dfrac{1+t^2+2 t}{1+t^2-2 t}\) | ||
\(=\dfrac{(1+t)^2}{(1-t)^2 }\) | ||
\( =\left(\dfrac{1-t}{1-t}\right)^2\) |
\(\operatorname{LHS}\) | \( =\dfrac{\sec x+\tan x}{\sec x-\tan x}\) | |
\( =\dfrac{\frac{1+t^2}{1-t^2}+\frac{2 t}{1-t^2}}{\frac{1+t^2}{1-t^2}-\frac{2 t}{1-t^2}} \times \dfrac{1-t^2}{1-t^2}\) | ||
\( =\dfrac{1+t^2+2 t}{1+t^2-2 t}\) | ||
\(=\dfrac{(1+t)^2}{(1-t)^2 }\) | ||
\( =\left(\dfrac{1-t}{1-t}\right)^2\) |
By making the substitution \(t=\tan \dfrac{\theta}{2}\), or otherwise, show that \(\dfrac{1+\sin x-\cos x}{1+\sin x+\cos x}=\tan \dfrac{x}{2}\). (3 marks) --- 8 WORK AREA LINES (style=lined) ---
\(\operatorname{LHS} \)
\( =\dfrac{1+\sin x-\cos x}{1+\sin x+\cos x}\)
\( =\dfrac{1+\dfrac{2 t}{1+t^2}-\dfrac{1-t^2}{1+t^2}}{1+\dfrac{2 t}{1+t^2}+\dfrac{1-t^2}{1+t^2}} \times \dfrac{1+t^2}{1+t^2}\)
\( =\dfrac{1+t^2+2 t-1+t^2}{1+t^2+2 t+1-t^2}\)
\( =\dfrac{2 t(t+1)}{2(t+1)} \)
\(=t\)
\(=\tan \dfrac{x}{2}\)
\(\operatorname{LHS} \)
\( =\dfrac{1+\sin x-\cos x}{1+\sin x+\cos x}\)
\( =\dfrac{1+\dfrac{2 t}{1+t^2}-\dfrac{1-t^2}{1+t^2}}{1+\dfrac{2 t}{1+t^2}+\dfrac{1-t^2}{1+t^2}} \times \dfrac{1+t^2}{1+t^2}\)
\( =\dfrac{1+t^2+2 t-1+t^2}{1+t^2+2 t+1-t^2}\)
\( =\dfrac{2 t(t+1)}{2(t+1)} \)
\(=t\)
\(=\tan \dfrac{x}{2}\)
Solve \(\cos \theta+\sin \theta=1\) for \(0 \leq \theta \leq 2 \pi\). (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
\(\theta=0, \dfrac{\pi}{2}, 2\pi \)
\(\text{Let}\ \ t=\tan \dfrac{\theta}{2} \)
\(\dfrac{1-t^2}{1+t^2} + \dfrac{2t}{1+t^2} \) | \(=1\ \ \text{(see reference sheet)}\) | |
\(1-t^2+2t\) | \(=1+t^2\) | |
\(2t^2-2t\) | \(=0\) | |
\(2t(t-1) \) | \(=0\) | |
\(t\) | \(= 0 \ \text{or} \ 1\) |
\(\text{When}\ \ \tan\dfrac{\theta}{2} = 0: \)
\(\dfrac{\theta}{2} = 0, \pi\ \ \Rightarrow \ \theta=0\ \ \text{or}\ \ 2\pi \)
\(\text{When}\ \ \tan\dfrac{\theta}{2} = 1: \)
\(\dfrac{\theta}{2} = \dfrac{\pi}{4}\ \Rightarrow \ \theta=\dfrac{\pi}{2} \)
\(\text{Test}\ \ \theta=\pi: \)
\(\cos\ \pi+\sin\ \pi = -1+0=-1\ \ \text{(not a solution)} \)
\(\therefore \theta=0, \dfrac{\pi}{2}, 2\pi \)
By using the substitution `t = tan\ theta/2`, or otherwise, show that `(1 − cos\ theta)/(sin\ theta) = tan\ theta/2`. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions)}`
`=>tan\ theta/2 = t`
`=>sin theta` | `= 2 · t/(sqrt(1 + t^2)) · 1/(sqrt(1 + t^2)) = (2t)/(1 + t^2)` |
`=>cos theta` | `= 1/(1 + t^2) − t^2/(1 + t^2) = (1 − t^2)/(1 + t^2)` |
`text(Show)\ \ (1 − cos theta)/(sin theta) = tan\ theta/2 :`
`(1 − cos\ theta)/(sin theta)` | `= (1 − ((1 − t^2)/(1 + t^2)))/((2t)/(1 + t^2)) xx (1+t^2)/(1+t^2)` |
`= (1 + t^2 − (1 − t^2))/(2t)` | |
`= (2t^2)/(2t)` | |
`= t` | |
`= tan\ theta/2\ \ …text(as required)` |
By making the substitution `t = tan\ theta/2`, or otherwise, show that
`text(cosec)\ theta + cot theta = cot\ theta/2.` (2 marks)
--- 10 WORK AREA LINES (style=lined) ---
`text(Proof)\ \ text{(See Worked Solutions)}`
`text(Show cosec)\ theta + cot\ theta = cot\ theta/2`
`tan\ theta/2=t`
`=>sin theta` | `= 2 sin\ theta/2\ cos\ theta/2= (2t)/(t^2 +1)` |
`=>cos theta` | `= cos^2\ theta/2 – sin^2\ theta/2= (1 – t^2)/(t^2 + 1)` |
`=>tan theta` | `= (sin theta)/(cos theta)= (2t)/(1 – t^2)` |
`text(LHS)` | `= 1/(sin theta) + 1/(tan theta)` |
`= (t^2 + 1)/(2t) + (1 – t^2)/(2t)` | |
`= (t^2 + 1 + 1 – t^2)/(2t)` | |
`= 1/t` | |
`= 1/(tan\ theta/2)` | |
`= cot\ theta/2` | |
`=\ text(RHS … as required.)` |