SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, EXT1* C1 2007 HSC 5b

A particle is moving on the `x`-axis and is initially at the origin. Its velocity, `v` metres per second, at time `t` seconds is given by

`v = (2t)/(16 + t^2).`

  1. What is the initial velocity of the particle?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find an expression for the acceleration of the particle.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the time when the acceleration of the particle is zero.  (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  4. Find the position of the particle when `t = 4`.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `0`
  2. `{2(16 – t^2)}/(16 + t^2)^2`
  3. `4\ text(seconds)`
  4. `log_e 2\ \ text(metres)`
Show Worked Solution

i.  `v = (2t)/(16 + t^2)`

`text(When)\ t` `= 0`
`v` `= 0`

`:.\ text(Initial velocity is 0.)`

 

ii.  `a = d/(dt) ((2t)/(16 + t^2))`
 

`text(Using quotient rule)`

`u` `= 2t` `v` `= 16 + t^2`
`u prime` `= 2` `v prime` `= 2t`
`(dv)/(dt)` `= (u prime v – uv prime)/v^2`
  `= {2(16 + t^2) – 2t * 2t}/(16 + t^2)^2`
  `= (32 + 2t^2 – 4t^2)/(16 + t^2)^2`
  `= {2(16 – t^2)}/(16 + t^2)^2`

 

iii.  `text(Find)\ t\ text(when)\ (dv)/(dt) = 0`

`{2 (16 – t^2)}/(16 + t^2)^2` `= 0`
`2 (16 – t^2)` `= 0`
`t^2` `= 16`
`t` `= 4\ ,\ t >= 0`

 

`:.\ text(The acceleration is zero when)`

`t = 4\ text(seconds.)`

 

iv.  `v = (2t)/(16 + t^2)`

`x` `= int v\ dt`
  `= int (2t)/(16 + t^2)`
  `= log_e (16 + t^2) + c`

 

`text(When)\ \ t = 0\ ,\ x = 0`

`0 = log_e (16 + 0) + c`

`c = -log_e 16`

`:. x = log_e(16 + t^2) – log_e 16`
 

`text(When)\ t = 4,`

`x` `= log_e (16 + 4^2) – log_e 16`
  `= log_e 32 – log_e 16`
  `= log_e (32/16)`
  `= log_e 2\ \ text(metres)`

 

`:.\ text(When)\ t = 4\ , \ text(the position of the)`

`text(particle is)\ log_e 2 \ text(metres.)`

Filed Under: Motion, Rates of Change with respect to time (Ext1) Tagged With: Band 3, Band 4, Band 5, smc-1077-10-Motion, smc-1077-50-Log Equation

Copyright © 2014–2025 SmarterEd.com.au · Log in