SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, EXT1 V1 2025 HSC 14c

The hands of an analogue clock are \(OA\) and \(OB\),

where \(A\) is \(\left(\sin \left(\dfrac{\pi t}{360}\right), \cos \left(\dfrac{\pi t}{360}\right)\right), B\) is \(\left(2 \sin \left(\dfrac{\pi t}{30}\right), 2 \cos \left(\dfrac{\pi t}{30}\right)\right)\),

\(O\) is the origin, and  \(t \geq 0\)  is the number of minutes past midnight.

Find the values of \(t\) when the hands are perpendicular for the first and second time after midnight. Give your answers to 3 decimal places.   (3 marks)

--- 12 WORK AREA LINES (style=lined) ---

Show Answers Only

\(t=16.364, 49.091 \ \text{mins}\).

Show Worked Solution

\(\text{Express \(OA\) and \(OB\) as vectors:}\)

\(\overrightarrow{O A}=\displaystyle \binom{\sin \left(\frac{\pi t}{360}\right)}{\cos \left(\frac{\pi t}{360}\right)}, \quad \overrightarrow{O B}=\displaystyle \binom{2\, \sin \left(\frac{\pi t}{30}\right)}{2\, \cos \left(\frac{\pi t}{30}\right)}\)

\(\text{When hands are parallel,} \ \ \overrightarrow{OA} \cdot \overrightarrow{OB}=0:\)

\(\sin \left(\dfrac{\pi t}{360}\right) \times 2\, \sin \left(\dfrac{\pi t}{30}\right)+\cos \left(\dfrac{\pi t}{360}\right) \times 2\, \cos \left(\dfrac{\pi t}{30}\right)=0\)

\(\cos \left(\dfrac{\pi t}{30}-\dfrac{\pi t}{360}\right)\) \(=0\)
\(\cos \left(\dfrac{11 \pi t}{360}\right)\) \(=0\)

 

\(\dfrac{11 \pi t}{360}=\dfrac{\pi}{2}, \dfrac{3 \pi}{2}\)

\(t=\dfrac{\pi}{2} \times \dfrac{360}{11 \pi}=16.364 \ \text{mins}\)

\(t=\dfrac{3 \pi}{2} \times \dfrac{360}{11 \pi}=49.091 \ \text{mins}\).

Filed Under: Operations With Vectors (Ext1) Tagged With: Band 5, smc-1086-25-Perpendicular Vectors

Vectors, EXT1 V1 EQ-Bank 3 MC

Which of the following vectors is perpendicular to \(\displaystyle \binom{3}{-2}\) and has a magnitude of 3?

  1. \(\displaystyle 3\binom{-3}{2}\)
  2. \(\displaystyle \frac{3}{\sqrt{13}}\binom{-3}{2}\)
  3. \(\displaystyle \frac{\sqrt{10}}{\sqrt{13}}\binom{2}{3}\)
  4. \(\displaystyle \frac{3}{\sqrt{13}}\left(\frac{2}{3}\right)\)
Show Answers Only

\(\Rightarrow D\)

Show Worked Solution

\(\text{If} \ \perp \ \Rightarrow \text {dot product}=0:\)

\(\displaystyle \binom{3}{-2}\binom{-3}{2}=-9-4=-13 \neq 0  \quad \text{(Eliminate A and B)}\)
  

\(\text{Consider Option D:}\)

\(\displaystyle \frac{3}{\sqrt{13}}\left(\frac{2}{3}\right)=\binom{\frac{6}{\sqrt{13}}}{\frac{9}{\sqrt{13}}} \)

\(\text{Magnitude }=\sqrt{\left(\frac{6}{\sqrt{13}}\right)^2+\left(\frac{9}{\sqrt{13}}\right)^2}=\sqrt{\dfrac{36+81}{13}}=3\)

\(\Rightarrow D\)

Filed Under: Operations With Vectors (Ext1) Tagged With: Band 4, smc-1086-25-Perpendicular Vectors

Vectors, EXT1 V1 2024 HSC 12a

The vectors \(\displaystyle \binom{a^2}{2}\) and \(\displaystyle  \binom{a+5}{a-4}\) are perpendicular.

Find the possible values of \(a\).   (3 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(x=1,-4 \text { or }-2\)

Show Worked Solution

\(\text{If vectors are }\perp:\)

\(\displaystyle\binom{a^2}{2} \cdot\binom{a+5}{a-4}=0\)

\(a^3+5 a^2+2 a-8=0\)
 

\(\text{Test for roots:}\)

\(1^3+5 \times 1^2+2\times 1-8=0 \, \checkmark\)

\((a-1) \text{ is a factor.}\)

\(\text{By polynomial long division:}\)

\((a-1)\left(a^2+6 a+8\right)=0\)

\((a-1)(a+4)(a+2)=0\)

\(\therefore x=1,-4 \text { or }-2\)

Filed Under: Operations With Vectors (Ext1) Tagged With: Band 3, smc-1086-25-Perpendicular Vectors

Vectors, EXT1 V1 2022 HSC 11d

The vectors  `underset~u=([a],[2])`  and  `underset~v=([a-7],[4a-1])`  are perpendicular.

What are the possible values of `a`?  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`a=1, -2`

Show Worked Solution

`text{If}\ \ underset~u ⊥ underset~v:`

`([a],[2])*([a-7],[4a-1])` `=0`  
`a(a-7)+2(4a-1)` `=0`  
`a^2-7a+8a-2` `=0`  
`a^2+a-2` `=0`  
`(a+2)(a-1)` `=0`  

 
`:.a=1\ \ text{or}\ \ -2`

Filed Under: Operations With Vectors (Ext1) Tagged With: Band 3, smc-1086-25-Perpendicular Vectors

Vectors, EXT1 V1 2020 HSC 11b

For what values(s) of  `a`  are the vectors  `((a),(−1))`  and  `((2a - 3),(2))`  perpendicular?  (3 marks)

Show Answers Only

`a = −1/2\ text(or)\ 2`

Show Worked Solution
`((a),(−1)) · ((2a – 3),(2))` `= 0`
`a(2a – 3) + (−1) xx 2` `= 0`
`2a^2 – 3a – 2` `= 0`
`(2a + 1)(a – 2)` `= 0`

 
`:. a = −1/2\ \ text(or)\ \ 2`

Filed Under: Operations With Vectors (Ext1) Tagged With: Band 3, smc-1086-25-Perpendicular Vectors

Vectors, EXT1 V1 SM-Bank 17

Two vectors are given by `underset~a = 2underset~i + m underset~j`  and  `underset~b = −5underset~i + n underset~j`  where  `m, n > 0`.

If  `|underset~a| = 3`  and  `underset~a`  is perpendicular to  `underset~b`, find the values of  `m`  and  `n`.  (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`2sqrt5`

Show Worked Solution

`underset~a = [(2),(m)],\ \ underset~b = [(−5),(n)]`

 
`text(Using)\ |underset~a| = 3:`

`3` `= sqrt(2^2 + m^2)`
`m^2` `= 5`
`:.m` `= sqrt5,\ \ \ (m > 0)`

 
`text(S)text(ince)\ underset~a ⊥ underset~b:`

`a · b` `= 0`
`2xx −5 + mn` `= 0`
`sqrt5 n` `= 10`
`n` `= 10/sqrt5`
  `= 2sqrt5`

Filed Under: Operations With Vectors (Ext1) Tagged With: Band 4, smc-1086-25-Perpendicular Vectors

Vectors, EXT1 V1 SM-Bank 20

Consider the vector  `underset~a = underset~i + sqrt3underset~j`, where  `underset~i`  and  `underset~j`  are unit vectors in the positive direction of the `x` and `y` axes respectively.

  1. Find the unit vector in the direction of  `underset~a`.    (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the acute angle that  `underset~a`  makes with the positive direction of the `x`-axis.   (1 mark)

    --- 6 WORK AREA LINES (style=lined) ---

  3. The vector  `underset~b = m underset~i - 2underset~j`.

     

    Given that  `underset~b`  is perpendicular to  `underset~a`, find the value of  `underset~m`.   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `1/2(underset~i + sqrt3underset~j)`
  2. `60°`
  3. `2sqrt3`
Show Worked Solution

i.   `underset~a = underset~i + sqrt3underset~j`

`|underset~a| = sqrt(1 + (sqrt(3))^2) = 2`

`overset^a = (underset~a)/(|underset~a|) = 1/2(underset~i + sqrt3underset~j)`

 

ii.   `text(Solution 1)`

`underset~a\ =>\ text(Position vector from)\ \ O\ \ text{to}\ \ (1, sqrt3)`

`tan theta` `=sqrt3`  
`:. theta` `=60°`  
     

`text(Solution 2)`

`text(Angle with)\ xtext(-axis = angle with)\ \ underset~b = underset~i`

`underset~a · underset~i = 1 xx 1 = 1`

`underset~a · underset~i` `= |underset~a||underset~i|costheta`
`1` `= 2 xx 1 xx costheta`
`costheta` `= 1/2`
`:. theta` `= 60°`

 

iii.   `underset~b = m underset~i – 2underset~j`

`underset~a · underset~b = [(1),(sqrt3)] · [(m),(−2)] = m – 2sqrt3`

`text(S)text(ince)\ underset~a ⊥ underset~b:`

`m – 2sqrt3` `= 0`
`m` `= 2sqrt3`

Filed Under: Operations With Vectors (Ext1) Tagged With: Band 3, Band 4, smc-1086-20-Angles Between Vectors, smc-1086-25-Perpendicular Vectors, smc-1086-30-Unit Vectors and Projections

Vectors, EXT1 V1 SM-Bank 19

Consider the following vectors

`overset(->)(OA) = 2underset~i + 2underset~j,\ \  overset(->)(OB) = 3underset~i - underset~j,\ \ overset(->)(OC) = 5underset~i + 3underset~j`

  1. Find  `overset(->)(AB)`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. The points `A`, `B` and `C` are vertices of a triangle. Prove that the triangle has a right angle at `A`.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Find the length of the hypotenuse of the triangle.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `underset~i – 3underset~j`
  2. `text(See Worked Solutions)`
  3. `2sqrt5`
Show Worked Solution

i.  `text(Find)\ overset(->)(AB):`

COMMENT: Many teachers recommend column vector notation to simplify calculations and minimise errors – we agree!

`overset(->)(OA) = [(2),(2)],\ \ overset(->)(OB)[(3),(−1)]`

`overset(->)(AB)` `= overset(->)(OB) – overset(->)(OA)`
  `= [(3),(−1)] – [(2),(2)]`
  `= [(1),(−3)]`
  `= underset~i – 3underset~j`

 

ii.    `overset(->)(AC)` `= overset(->)(OC) – overset(->)(OA)`
    `= [(5),(3)] – [(2),(2)]`
    `= [(3),(1)]`
    `= 3underset~i + underset~j`

 

`overset(->)(AB) · overset(->)(AC)` `= 1 xx 3 + −3 xx 1=0`

`=> AB ⊥ AC`

`:. DeltaABC\ text(has a right angle at)\ A.`

 

iii.   `overset(->)(BC)\ text(is the hypotenuse)`

`overset(->)(BC)` `= overset(->)(OC) – overset(->)(OB)`
  `= [(5),(3)] – [(3),(−1)]`
  `= [(2),(4)]`
`|overset(->)(BC)|` `=\ text(length of hypotenuse)`
  `= sqrt(2^2 + 4^2)`
  `= sqrt(20)`
  `= 2sqrt5`

Filed Under: Operations With Vectors (Ext1) Tagged With: Band 3, Band 4, smc-1086-10-Basic Calculations, smc-1086-25-Perpendicular Vectors

Vectors, EXT1 V1 SM-Bank 16 MC

The vectors  `underset~a = 2underset~i + m underset~j`  and  `underset~b = m^2underset~i - underset~j`  are perpendicular for

A.   `m = −2`  and  `m = 0`

B.   `m = 2`  and  `m = 0`

C.   `m = -1/2`  and  `m = 0`

D.   `m = 1/2`  and  `m = 0`

Show Answers Only

`D`

Show Worked Solution

`underset ~a ⊥ underset ~b\ \ =>\ \ underset ~a ⋅ underset ~b=0`

`underset ~a ⋅ underset ~b` `= 2m^2 + m(-1)`
`0` `= 2m^2 – m`
`0` `= m(2m – 1)`

 
`:. m = 0, quad m = 1/2`

`=> D`

Filed Under: Operations With Vectors (Ext1) Tagged With: Band 3, smc-1086-25-Perpendicular Vectors

Vectors, EXT1 V1 SM-Bank 15

Consider the vectors

`underset~a = 6underset~i + 2underset~j,\ \ underset~b = 2underset~i - m underset~j`

  1. Calculate  `2underset~a - 3underset~b`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the values of  `m`  for which  `|underset~b| = 3sqrt2`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3. Find the value of  `m`  such that  `underset~a`  is perpendicular to  `underset~b`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `[(6),(4 + 3m)]`
  2. `±sqrt14`
  3. `6`
Show Worked Solution
i.    `2underset~a – 3underset~b` `= 2[(6),(2)] – 3[(2),(−m)]`
    `= [(12),(4)] – [(6),(−3m)]`
    `= [(6),(4 + 3m)]`

 

ii.   `underset~a = [(6),(2)], \ \ underset~b = [(2),(−m)]`

`|underset~b|` `= sqrt(4 + m^2)`
`3sqrt2` `= sqrt(4 + m^2)`
`18` `= 4 + m^2`
`m^2` `= 14`
`m` `= ±sqrt14`

 

iii.   `text(If)\ \ underset~a ⊥ underset~b \ => \ underset~a · underset~b = 0`

`6 xx 2 + 2 xx – m` `= 0`
`2m` `= 12`
`:. m` `= 6`

Filed Under: Operations With Vectors (Ext1) Tagged With: Band 3, Band 4, smc-1086-10-Basic Calculations, smc-1086-25-Perpendicular Vectors

Vectors, EXT1 V1 2018 SPEC2 12 MC

If  `|underset ~a + underset ~b| = |underset ~a| + |underset ~b|`  and  `underset ~a, underset ~b != underset ~0`, which one of the following is necessarily true?

A.   `underset ~a\ text(is parallel to)\ underset ~b`

B.   `|underset ~a| = |underset ~b|`

C.   `underset ~a = underset ~b`

D.   `underset ~a\ text(is perpendicular to)\ underset ~b` 

Show Answers Only

`A`

Show Worked Solution
`|underset ~a + underset ~b|^2` `= (|underset ~a| + |underset ~b|)^2\ \ \ text{(given)}`
  `= |underset ~a|^2 + 2|underset ~a||underset ~b|+|underset ~b|^2`
`underset ~a ⋅ underset ~b` `= |underset ~a||underset ~b| cos theta`

 
`=> 2|underset ~a||underset ~b| = (2 underset ~a ⋅ underset ~b)/(cos theta)`

♦♦♦ Mean mark 36%.

`=>|underset ~a + underset ~b|^2 = |underset ~a|^2 + (2 underset ~a ⋅ underset ~b)/(cos theta) + |b|^2`

`(underset ~a + underset ~b) * (underset ~a + underset ~b) = underset ~a ⋅ underset ~a + (2 underset ~a ⋅ underset ~b)/(cos theta) + underset ~b ⋅ underset ~b`

`underset ~a ⋅ underset ~a + 2underset ~a ⋅ underset ~b + underset ~b ⋅ underset ~b = underset ~a ⋅ underset ~a + (2 underset ~a ⋅ underset ~b)/(cos theta) + underset ~b ⋅ underset ~b`

`2 underset ~a ⋅ underset ~b = (2 underset ~a ⋅ underset ~b)/(cos theta)`

`:. cos theta = 1\ \ =>\ \  theta = 0`

`=>  A`

Filed Under: Operations With Vectors (Ext1) Tagged With: Band 6, smc-1086-20-Angles Between Vectors, smc-1086-25-Perpendicular Vectors

Copyright © 2014–2025 SmarterEd.com.au · Log in