When \(x=-2\) on the curve \(y=f(x)\), the following is true:
\(\dfrac{dy}{dx}<0\) and \(\dfrac{d^2 y}{d x^2}>0\)
At \(x=-2, f(x)\) is
- Increasing and concave up
- Decreasing and concave up
- Increasing and concave down
- Decreasing and concave down
Aussie Maths & Science Teachers: Save your time with SmarterEd
When \(x=-2\) on the curve \(y=f(x)\), the following is true:
\(\dfrac{dy}{dx}<0\) and \(\dfrac{d^2 y}{d x^2}>0\)
At \(x=-2, f(x)\) is
\(B\)
\(\text{At}\ \ x=-2: \)
\(\dfrac{dy}{dx}<0 \ \Rightarrow \ \text{Decreasing}\)
\(\dfrac{d^2 y}{d x^2}>0 \ \Rightarrow \ \text{Concave up}\)
\(\Rightarrow B\)
The graph of the function \(f(x) = \ln(1 + x^{2})\) is shown.
--- 10 WORK AREA LINES (style=lined) ---
\begin{array} {|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & 0 & 0.25 & 0.5 & 0.75 & 1 \\
\hline
\rule{0pt}{2.5ex} \ln(1+x^2) \rule[-1ex]{0pt}{0pt} & \ \ \ \ 0\ \ \ \ & 0.0606 & 0.2231 & 0.4463 & 0.6931 \\
\hline
\end{array}
--- 5 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
a. \(f(x)= \ln(1+x^2)\)
\(f^{′}(x)=\dfrac{2x}{1+x^2}\)
| \(f^{″}(x)\) | \(=\dfrac{2(1+x^2)-2x(2x)}{(1+x^2)^2}\) | |
| \(=\dfrac{2+2x^2-4x^2}{(1+x^2)^2}\) | ||
| \(=\dfrac{2(1-x^2)}{(1+x^2)^2}\) |
\(\text{Consider domain}\ x \in(-1,1)\ \ \Rightarrow\ \ 1-x^2>0 \)
\((1+x^2)^2 \gt 0\ \ \text{for all}\ x\)
\(\Rightarrow \ f^{″}(x) \gt 0\ \text{for}\ x \in(-1,1) \)
\(\therefore f(x)\ \text{is concave up for}\ x \in(-1,1) \)
b. \(\text{Total shaded area}\ \approx 0.5383\ \text{(4 d.p.)}\)
c. \(\text{Trapezoidal rule assumes straight lines join points in the table.}\)
\(\text{Since the graph is concave up in the given domain, the trapezoidal rule will}\)
\(\text{overestimate the area.}\)
a. \(f(x)= \ln(1+x^2)\)
\(f^{′}(x)=\dfrac{2x}{1+x^2}\)
| \(f^{″}(x)\) | \(=\dfrac{2(1+x^2)-2x(2x)}{(1+x^2)^2}\) | |
| \(=\dfrac{2+2x^2-4x^2}{(1+x^2)^2}\) | ||
| \(=\dfrac{2(1-x^2)}{(1+x^2)^2}\) |
\(\text{In domain}\ x \in(-1,1)\ \ \Rightarrow\ \ 1-x^2>0 \)
\((1+x^2)^2 \gt 0\ \ \text{for all}\ x\)
\(\Rightarrow \ f^{″}(x) \gt 0\ \text{for}\ x \in(-1,1) \)
\(\therefore f(x)\ \text{is concave up for}\ x \in(-1,1) \)
b. \(\text{Total shaded area}\)
\(\approx 2 \times \dfrac{h}{2}[ y_0 + 2(y_1+y_2+y_3) + y_4] \)
\(\approx 2 \times \dfrac{0.25}{2}[ 0 + 2(0.0606+0.2231+0.4463) + 0.6931] \)
\(\approx 0.538275 \)
\(\approx 0.5383\ \text{(4 d.p.)}\)
c. \(\text{Trapezoidal rule assumes straight lines join points in the table.}\)
\(\text{Since the graph is concave up in the given domain, the trapezoidal rule will}\)
\(\text{overestimate the area.}\)
The graph of the function \(g(x)\) is shown.
Using the graph, complete the table with the words positive, zero or negative as appropriate. (3 marks)
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \textit{\(x\)-value} \rule[-1ex]{0pt}{0pt} & \textit{First derivative of \(g(x)\) at \(x\)} \rule[-1ex]{0pt}{0pt} & \textit{Second derivative of \(g(x)\) at \(x\)} \\
\hline
\rule{0pt}{2.5ex} \text{\(x=-3\)} \rule[-1ex]{0pt}{0pt} & \text{ } \rule[-1ex]{0pt}{0pt} & \text{ } \\
\hline
\rule{0pt}{2.5ex} \text{\(x=1\)} \rule[-1ex]{0pt}{0pt} & \text{ } \rule[-1ex]{0pt}{0pt} & \text{ } \\
\hline
\rule{0pt}{2.5ex} \text{\(x=5\)} \rule[-1ex]{0pt}{0pt} & \text{ } \rule[-1ex]{0pt}{0pt} & \text{ } \\
\hline
\end{array}
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \textit{\(x\)-value} \rule[-1ex]{0pt}{0pt} & \textit{First derivative of \(g(x)\) at \(x\)} \rule[-1ex]{0pt}{0pt} & \textit{Second derivative of \(g(x)\) at \(x\)} \\
\hline
\rule{0pt}{2.5ex} \text{\(x=-3\)} \rule[-1ex]{0pt}{0pt} & \text{positive} \rule[-1ex]{0pt}{0pt} & \text{negative} \\
\hline
\rule{0pt}{2.5ex} \text{\(x=1\)} \rule[-1ex]{0pt}{0pt} & \text{zero} \rule[-1ex]{0pt}{0pt} & \text{zero} \\
\hline
\rule{0pt}{2.5ex} \text{\(x=5\)} \rule[-1ex]{0pt}{0pt} & \text{positive} \rule[-1ex]{0pt}{0pt} & \text{positive} \\
\hline
\end{array}
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \textit{\(x\)-value} \rule[-1ex]{0pt}{0pt} & \textit{First derivative of \(g(x)\) at \(x\)} \rule[-1ex]{0pt}{0pt} & \textit{Second derivative of \(g(x)\) at \(x\)} \\
\hline
\rule{0pt}{2.5ex} \text{\(x=-3\)} \rule[-1ex]{0pt}{0pt} & \text{positive} \rule[-1ex]{0pt}{0pt} & \text{negative} \\
\hline
\rule{0pt}{2.5ex} \text{\(x=1\)} \rule[-1ex]{0pt}{0pt} & \text{zero} \rule[-1ex]{0pt}{0pt} & \text{zero} \\
\hline
\rule{0pt}{2.5ex} \text{\(x=5\)} \rule[-1ex]{0pt}{0pt} & \text{positive} \rule[-1ex]{0pt}{0pt} & \text{positive} \\
\hline
\end{array}
The following table gives the signs of the first and second derivatives of a function \(y=f(x)\) for different values of \(x\).
| \(x\) | \(-2\ \ \) | \(0\) | \(2\) |
| \( f^{′}(x) \) | \(+\) | \(0\) | \(+\) |
| \(f^{″}(x)\) | \(-\) | \(0\) | \(+\) |
Which of the following is a possible sketch of \(y=f(x)\)?
\(C\)
\(\text{By elimination:}\)
\(\text{Gradient is positive at}\ x=-2\ \text{and}\ 2\ \ (\text{Eliminate}\ B\ \text{and}\ D)\)
\(\text{SP and POI at}\ x=0\ \ (\text{Eliminate}\ A)\)
\(\Rightarrow C\)
The diagram shows part of `y = f(x)` which has a local minimum at `x = –2` and a local maximum at `x = 3`.
Which of the following shows the correct relationship between `f^(″)(–2), \ f(0)` and `f^(′)(3)`?
`A`
| `f^(″)(–2)` | `> 0\ \ \ (text(concave up at)\ \ x = –2)` |
| `f(0)` | `< 0\ \ \ (text(see graph))` |
| `f^(′)(3)` | `= 0\ \ \ (text(S.P.))` |
`:. f(0) < f^(′)(3) < f^(″)(–2)`
`=> A`
Which of the following could represent the graph of `y = −x^2 + bx + 1`, where `b > 0`?
| A. | B. | ||
| C. | D. |
`C`
`y = −x^2 + bx + 1`
`(dy)/(dx) = −2x + b`
`text(S.P. occurs when)\ \ (dy)/(dx) = 0:`
| `−2x + b` | `= 0` |
| `x` | `= b/2` |
`text(S)text(ince)\ b > 0, text(SP occurs when)\ x > 0`
`=>C`
The diagram shows the graph of `f^{′}(x)`, the derivative of a function.
For what value of `x` does the graph of the function `f(x)` have a point of inflection?
`B`
`text(P.I. will occur when the graph of)\ \ f^{′}(x)`
`text(has a turning point).`
`:. x = b`
`=> B`
The function `f(x)` is defined for `a <= x <= b.`
On this interval, `f ^{′}(x) > 0 and f^{″}(x) < 0.`
Which graph best represents `y = f(x)`?
| (A) | (B) | ||
| (C) | (D) |
`A`
`text(Interpreting)\ \ f^{′}(x) > 0,`
`=>\ text(gradient is always positive)`
`text(Interpreting)\ \ f^{″}(x) < 0,`
`=>\ text(Curve is concave down)`
`=> A`
The diagram shows the graph `f(x)`.
Which of the following statements is true?
`A`
`text(At)\ \ x=a,`
`f^{′}(a) > 0\ \ \ :.\ text(Cannot be)\ C\ text(or)\ D`
`f^{″}(a) < 0\ \ text(because)\ \ f(x)\ text(is concave down at)\ x=a`
`:.\ text(Cannot be)\ B`
`=> A`
The diagram shows points `A`, `B`, `C` and `D` on the graph `y = f(x)`.
At which point is `f^{′}(x) > 0` and ` f^{″}(x)= 0`?
`B`
`text(At)\ A,\ \ \ f^{′}(x) <0`
`text(At)\ C,\ \ \ f^{′}(x) =0`
`:.\ text(It cannot be)\ A\ text(or)\ C.`
`text(At)\ D,\ \ \ f^{″}(x) >0\ \ \ text{(concave up)}`
`text(At)\ B,\ \ \ f^{″}(x) =0\ \ \ text{(concavity changes)}`
`=> B`