The expression `1-\frac{4\sin^2(x)}{\tan^2(x)+1}` simplifies to
- `sin(x) \cos(x)`
- `1-2\cos^2(2x)`
- `2\sin(2x)`
- `2\sin^2(2x)`
- `\cos^2(2x)`
Aussie Maths & Science Teachers: Save your time with SmarterEd
The expression `1-\frac{4\sin^2(x)}{\tan^2(x)+1}` simplifies to
`E`
`1-\frac{4 \sin ^2 x}{\tan ^2 x+1}` | `= 1-\frac{4 \sin ^2 x}{\sec ^2 x}` | |
`= 1-(2 \sin x\ \cos x)^2` | ||
`= 1-\sin ^2 (2 x)` | ||
`= \cos ^2 (2 x)` |
`=>E`
Given that `cos (x - y) = 3/5` and `tan(x) tan (y) = 2`, find `cos(x + y)`. (3 marks)
`-1/5`
`cos(x+y)= cos(x) cos(y) – sin(x) sin(y)`
`cos (x) cos (y) + sin (x) sin (y) = 3/5\ \ …\ (1)`
`(sin(x) sin(y))/(cos(x) cos(y))` | `=2` | |
`sin(x) sin(y)` | `= 2 cos (x) cos(y)\ \ …\ (2)` |
`text{Substitute (2) into (1):}`
`cos(x) cos(y) + 2 cos(x) cos(y)` | `= 3/5` |
`3 cos(x) cos(y)` | `= 3/5` |
`cos(x) cos(y)` | `= 1/5` |
`text(Substitute)\ \ cos(x)cos(y)=1/5\ \ text{into (1):}`
`1/5 + sin(x) sin(y)` | `= 3/5` |
`sin(x) sin(y)` | `= 2/5` |
`:. cos(x + y)` | `= cos(x) cos(y) – sin(x) sin(y)` |
`= 1/5 – 2/5` | |
`= -1/5` |
If `sin(theta + phi) = a` and `sin(theta - phi) = b`, then `sin(theta) cos(phi)` is equal to
`E`
`sin(theta + phi) = a`
`sin theta cos phi + sin phi cos theta` | `= a\ \ …\ (1)` |
`sin(theta – phi) = b` | |
`sin theta cos phi – sin phi cos theta` | `= b\ \ …\ (2)` |
`(1) + (2):`
`2 sin theta cos phi` | `= a + b` |
`:. sin theta cos phi` | `= (a + b)/2` |
`=> E`
Given that \(\cot (2 x)+\dfrac{1}{2}\, \tan (x)=a \cot (x)\), use a suitable double angle formula to find the value of \(a , a\) in RR. (3 marks)
\(a=\dfrac{1}{2}\)
\(\dfrac{1}{\tan (2 x)}+\dfrac{\tan (x)}{2}=\dfrac{a}{\tan (x)}, \quad \tan (x) \neq 0\)
\(\dfrac{1-\tan ^2(x)}{2 \tan (x)}+\dfrac{\tan (x)}{2}=\dfrac{a}{\tan (x)}\)
\(\text{If \(\tan(x) \neq 0\):}\)
\(\dfrac{1-\tan ^2(x)+\tan ^2(x)}{2 \tan (x)}\) | \(=\dfrac{a}{\tan (x)}\) |
\(1\) | \(=2 a\) |
\(\therefore a\) | \(=\dfrac{1}{2}\) |