The number of distinct solutions of the equation
`xsin(x)sec(2x) = 0, \ x ∈ [0,2pi]` is
- 3
- 4
- 5
- 6
- 7
Aussie Maths & Science Teachers: Save your time with SmarterEd
The number of distinct solutions of the equation
`xsin(x)sec(2x) = 0, \ x ∈ [0,2pi]` is
`A`
`xsin(x)sec(2x)` | `= (xsin(x))/(cos(2x))=0` |
`text(Find)\ \ x\ \ text(that satisfies:)`
`x = 0\ \ text(or)\ \ sin(x) = 0\ \ text(and)\ \ cos(2x) != 0`
`:. x = 0, \ pi\ \ text(or)\ \ 2pi`
`=> A`
Find all real solutions of the equation `2 cos(x) = sqrt 3 cot (x).` (3 marks)
`x=((2n+1)pi)/2, pi/3 + 2npi, (2pi)/3 + 2npi\ \ \ (n in ZZ)`
`2 cos x = sqrt 3 cot x`
`2 cos x – sqrt 3 cot x` | `= 0` | |
`2 cos x – sqrt 3 (cos x)/(sin x)` | `=0` | |
`(2 – sqrt 3/sin x) cos x` | `=0` |
`text(Solution 1:)\ \ cosx=0`
`x=pi/2, (3pi)/2, (5pi)/2, …`
`x=((2n+1)pi)/2\ \ \ (n in ZZ)`
`text(Solution 2:)\ \ 2 – sqrt 3/sin x = 0\ \ =>\ \ sin x = sqrt 3/2`
`x = pi/3, (2pi)/3, (7pi)/3, (8pi)/3, …`
`x=pi/3 + 2npi, (2pi)/3 + 2npi\ \ (n in ZZ)`
Find all real solutions of `tan(2x) = -tan(x)`. (3 marks)
`x = k pi, \ pi/3 + k pi, \ (2 pi)/3 + k pi, k in ZZ`
`(2 tan (x))/(1 – tan^2(x)) = -tan(x)`
`text(Let)\ \ tan(x) = k,`
`(2k)/(1 – k^2)` | `= -k` |
`2k` | `= -k(1 – k^2)` |
`2k + k(1 – k^2)` | `= 0` |
`k(3 – k^2)` | `= 0` |
`k(3 – k^2) = 0 \ \ =>\ \ k = 0, k^2 = 3`
`=> tan(x) = 0, tan(x) = +- sqrt 3`
`:. x = k pi, \ pi/3 + k pi, \ (2 pi)/3 + k pi\ \ (k in ZZ)`
a. `2sin(x)cos(x) = sin(x)`
`sin(x)(2cos(x) – 1) = 0`
`sin(x) = 0, cos(x) = 1/2`
`x = 0, pi/3, pi, 2pi – pi/3, 2pi`
`x = 0, pi/3, pi, (5pi)/3, 2pi`
b. `text(Solving cosec)(2x) = text(cosec)(x), \ x ∈ (0, pi) \\ {pi/2}:`
`text{Using part (a):}`
`sin(2x) = sin(x)\ \ text(when)\ \ x = pi/3`
`:. text(cosec)(x) = text(cosec)(2x)\ \ text(at)\ \ x=pi/3.`
`text(Sketch graphs:)`
`text(When cosec)(2x) < text(cosec)(x):`
`x ∈ (0, pi/3) ∪ (pi/2, pi)`
If `cos(x) = -a` and `cot(x) = b`, where `a, b > 0`, then `text{cosec}(-x)` is equal to
`A`
`cos(x) < 0, \ cot(x) > 0 => x\ text(is in 3rd quadrant,)`
`text(or)\ \ x in (pi, (3 pi)/2)(+2k pi, k in ZZ)`
`cot(x) = a/y = b\ \ =>\ \ y = a/b`
`text(cosec)(-x) = 1/(sin(-x)) = -1/(sin(x)) =-text(cosec)(x)`
`text(In 3rd quadrant:)`
`text(cosec)(x) < 0 \ =>\ \ text(cosec)(-x) > 0`
`:. text(cosec)(-x) = 1/y = b/a`
`=> A`
The solutions to `cos(x) > 1/4 text(cosec)(x)` for `x ∈ (0,2pi)\ text(\) {pi}` are given by
`E`
`cos(x) > 1/4 text(cosec)(x)`
`4cos(x) > text(cosec)(x)`
`text(Consider:)\ \ 4cos(x) = 1/(sin(x))`
`4cos(x)sin(x)` | `= 1` |
`2(2sin(x)cos(x))` | `= 1` |
`2(sin(2x))` | `= 1` |
`sin(2x)` | `= 1/2` |
`2x` | `= pi/6,(5pi)/6,(13pi)/6,(17pi)/6` |
`:. x` | `= pi/12,(5pi)/12,(13pi)/12,(17pi)/12\ \ \ (x ∈ (0,2pi)\ text(\) {pi})` |
`x ∈ (pi/12,(5pi)/12) ∪ (pi,(13pi)/12) ∪ ((17pi)/12,2pi)`
`=>E`