SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Graphs, SPEC2 2021 VCAA 2 MC

The implied domain of the function with rule  `f(x) = cos^(-1)(log_e(bx), b > 0)`  is

  1. `(0, 1]`
  2. `[1, e]`
  3. `[1/b, e/b]`
  4. `[1/b, (e^pi)/b]`
  5. `[1/(be), e/b]`
Show Answers Only

`E`

Show Worked Solution

`f(x)\ text(is defined when)`

`-1 <= log_e(bx) <= 1`

`1/e <= bx <= e`

`1/(be) <= x <= e/b`

`=>\ E`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 4, smc-1153-20-arccos

Graphs, SPEC2 2020 VCAA 2 MC

A function  `f` has the rule  `f(x) = |b cos^(−1)(x) - a|`, where  `a > 0, b > 0`  and  `a < (bpi)/2`.

The range of  `f` is

  1. `[−a, bpi - a]`
  2. `[0, bpi - a]`
  3. `[a, bpi - a]`
  4. `[0, bpi + a]`
  5. `[a - bpi, a]`
Show Answers Only

`B`

Show Worked Solution

`text(Range:)\ \ cos^(−1)(x) = [0, pi]`

♦ Mean mark 42%.

`text(Range:)\ \ b cos^(−1)(x) – a = [−a, bpi – a]`

`text(Given)\ \ 0 < a < (bpi)/2, text(Range) = [−a, bpi – a]`

`:.\ text(Range:)\ \ |b cos^(−1) (x) – a| = [0, bpi – a]`

`=>B`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 5, smc-1153-20-arccos

Graphs, SPEC2-NHT 2019 VCAA 3 MC

The maximal domain and range of the function  \(f(x)=a \cos ^{-1}(b x)+c\), where  \(a\), \(b\) and \(c\) are real constants with  \(a>0, b<0\)  and  \(c>0\), are respectively

  1. \([0, \pi]\) and \([-a, a]\)
  2. \([0, \pi]\) and \([-a+c, a+c]\)
  3. \(\left[-\dfrac{1}{b}, \dfrac{1}{b}\right]\) and \([c, a \pi+c]\)
  4. \(\left[\dfrac{1}{b},-\dfrac{1}{b}\right]\) and \([c, a \pi+c]\)
  5. \(\left[\dfrac{1}{b},-\dfrac{1}{b}\right]\) and \([-a \pi+c, a \pi+c]\)
Show Answers Only

\(D\)

Show Worked Solution
\(\text{Domain:}\)   \(-1 \leq b x \leq 1, \quad b<0\)
    \(\dfrac{1}{b} \leq x \leq-\dfrac{1}{b}\)

 

\(\text{Range:}\)   \(0 \leq \cos ^{-1}(b x) \leq \pi\)
    \(0 \leq a \cos ^{-1}(b x) \leq a \pi\)
    \(c \leq a \cos ^{-1}(b x)+c \leq a \pi+c\)

\(\Rightarrow D\)

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 4, smc-1153-20-arccos

Graphs, SPEC2 2011 VCAA 3 MC

The implied domain of the function with rule  `f(x) = b + cos^(−1)(ax)`  where  `a > 0`  is

A.   `(−pi/a,pi/a)`

B.   `[−1,1]`

C.   `[−pi/a,pi/a]`

D.   `(−1/a,1/a)`

E.   `[−1/a,1/a]`

Show Answers Only

`E`

Show Worked Solution

`−1 <= ax <= 1,\ \ a > 0`

`−1/a <= x <= 1/a`

`=> E`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 3, smc-1153-20-arccos

Graphs, SPEC2 2012 VCAA 4 MC

The domain and range of the function with rule  `f(x) = arccos(2x - 1) + pi/2`  are respectively

A.   `[−2,0]`  and  `[0,pi]`

B.   `[−2,0]`  and  `[pi/2,(3pi)/2]`

C.   `[0,1]`  and  `[0,pi]`

D.   `[0,1]`  and  `[pi/2,(3pi)/2]`

E.   `[0,pi]`  and  `[0,1]`

Show Answers Only

`D`

Show Worked Solution

`text(Domain:)`

`-1 <= 2x – 1 <= 1`

`0 <= 2x <= 2`

`0 <= x <= 1`

`text(Range:)`

`0 <= cos^(-1) (2x – 1) <= pi`

`pi/2 <= cos^(_1) (2x – 1) + pi/2 <= (3 pi)/2`

 
`=> D`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 3, smc-1153-20-arccos

Graphs, SPEC1 2013 VCAA 4

  1. State the maximal domain and the range of  `y = arccos(1-2x).`   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Sketch the graph of  `y = arccos(1-2x)`  over its maximal domain. Label the endpoints with their coordinates.   (2 marks)

     

     
              VCAA 2013 spec 4b
     

  3. Find the gradient of the tangent to the graph of  `y = arccos (1 – 2x)`  at  `x = 1/4.`   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Maximal domain)\ \ [0, 1];\ \ \ text(Range)\ \ [0, pi]`
  2.  

  3. `4/sqrt3`
Show Worked Solution

a.  `text(Maximal domain:)`

`1-2x` `∈ [−1, 1]`
`-2x` `∈ [−2, 0]`
`x` `∈ [0, 1]`

 
`text(When)\ \ x = 0,\ \ y = cos^-1 1= 0;`

`text(When)\ \ x = 1,\ \ y = cos^-1 (-1)= pi`

`:.\ text(Range is)\ \ [0, pi]`

 

b.   

 

c.   `y = cos^-1 (1-2x),`

`(dy)/(dx)` `= (-1(-2))/sqrt(1-(1-2x)^2)`
  `= 2/sqrt(1-(1-2x)^2)`

 
`text(At)\ \ x = 1/4,`

`m_T` `= 2/sqrt(1-(1-1/2)^2)`
  `=2/sqrt(3/4)`
  `= 4/sqrt 3`
  `= (4 sqrt 3)/3`

Filed Under: Inverse Trig Functions (SM), Tangents and Curve Sketching Tagged With: Band 4, smc-1153-20-arccos, smc-1182-10-Find gradient, smc-1182-35-Sketch curve

Graphs, SPEC2 2016 VCAA 2 MC

The implied domain of  `y = arccos ((x - a)/b)`, where  `b > 0`  is

A.  `[-1, 1]`

B.  `[a - b, a + b]`

C.  `[a - 1, a + 1]`

D.  `[a, a + b pi]`

E.  `[-b, b]` 

Show Answers Only

`B`

Show Worked Solution
`(x- a)/b` `in [-1, 1]`
`x – a` `in [-b, b]`
`x` `in [a – b, a + b]`

 
`=>  B`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 3, smc-1153-20-arccos

Graphs, SPEC2-NHT 2018 VCAA 3 MC

The implied domain of the function with rule  `f(x) = (3x)/(pi/2 - arccos (2 - x))`  is

A.   `[1, 3]`

B.   `[-1, 1]`

C.   `[0, 1) uu (1, 2]`

D.   `[-1, 0) uu (0, 1]`

E.   `[1, 2) uu (2, 3]`

Show Answers Only

`E`

Show Worked Solution

`-1 <= 2 -x <= 1`

`-3 <= – x <= – 1`

   `3 >= x >= 1\ \ …\ (1)`
 

`(2):`

`pi/2 != cos^(-1) (2 – x)`

`0 != 2 – x`

`x != 2\ \ …\ (2)`
 

`(1) nn (2)`

`1 <= x <= 3 nn x != 2`

`:.  x in [1, 2) uu (2, 3]`
 

`=>   E`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 4, smc-1153-20-arccos

Graphs, SPEC2 2017 VCAA 1 MC

The implied domain of  `f(x) = 2cos^(−1)(1/x)`  is

  1. `R`
  2. `[−1,1]`
  3. `(−∞,−1] ∪ [1,∞)`
  4. `R\ text(\) {0}`
  5. `[−1,1]\ text(\) {0}`
Show Answers Only

`C`

Show Worked Solution

`1/x ∈ [−1,1]`

`:. x ∈(−∞,−1] ∪ [1,∞)`

`=>C`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 3, smc-1153-20-arccos

Copyright © 2014–2025 SmarterEd.com.au · Log in