SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, SPEC2 2022 VCAA 1

Consider the family of functions \(f\) with rule  \(f(x)=\dfrac{x^2}{x-k}\), where \(k \in R \backslash\{0\}\).

  1. Write down the equations of the two asymptotes of the graph of \(f\) when \(k=1\).   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Sketch the graph of  \(y=f(x)\)  for  \(k=1\)  on the set of axes below. Clearly label any turning points with their coordinates and label any asymptotes with their equations.   (3 marks)
     

--- 0 WORK AREA LINES (style=lined) ---

  1.  i. Find, in terms of \(k\), the equations of the asymptotes of the graph of  \(f(x)=\dfrac{x^2}{x-k}\).   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. ii. Find the distance between the two turning points of the graph of  \(f(x)=\dfrac{x^2}{x-k}\) in terms of \(k\).   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Now consider the functions \(h\) and \(g\), where  \(h(x)=x+3\)  and  \(g(x)=\abs{\dfrac{x^2}{x-1}}\).
  4. The region bounded by the curves of \(h\) and \(g\) is rotated about the \(x\)-axis.
    1. Write down the definite integral that can be used to find the volume of the resulting solid.   (2 marks)

      --- 5 WORK AREA LINES (style=lined) ---

    2. Hence, find the volume of this solid. Give your answer correct to two decimal places.   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.  \(\text {Asymptotes: } x=1,\  y=x+1\)

b.   
       

c.i.   \(\text {Asymptotes: } x=k,\  y=x+k\)

c.ii.  \(\text {Distance }=2 \sqrt{5}|k|\)

d.i.  \(\displaystyle V=\pi \int_{\frac{-\sqrt{7}-1}{2}}^{\frac{\sqrt{7}-1}{2}}(x+3)^2-\left(\frac{x^2}{x-1}\right)^2 dx\)

d.ii.  \(V=51.42\ \text{u}^3 \)

Show Worked Solution

a.    \(\text {When } k=1 :\)

\(f(x)=\dfrac{x^2}{x-1}=\dfrac{(x+1)(x-1)+1}{(x-1)}=x+1+\dfrac{1}{x-1}\)

\(\text {Asymptotes: } x=1,\  y=x+1\)
 

b.    
       

 

c.i. \(f(x)=\dfrac{x^2}{x-k}=\dfrac{(x+k)(x-k)+k^2}{x-k}=x+k+\dfrac{k^2}{x-k}\)

\(\text {Using part a.}\)

\(\text {Asymptotes: } x=k,\  y=x+k\)
 

c.ii.  \(f^{\prime}(x)=1-\left(\dfrac{k}{x-k}\right)^2\)

\(\text {TP’s when } f^{\prime}(x)=0 \text { (by CAS):}\)

\(\Rightarrow(2 k, 4 k),(0,0)\)

\(\text {Distance }\displaystyle=\sqrt{(2 k-0)^2+(4 k-0)^2}=\sqrt{20 k^2}=2 \sqrt{5}|k|\)
 

d.i  \(\text {Solve for intersection of graphs (by CAS):}\)

\(\displaystyle x+3=\left|\frac{x^2}{x-1}\right|\)

\(\displaystyle \Rightarrow x=\frac{3}{2}, x=\frac{-1 \pm \sqrt{7}}{2}\)

\(\displaystyle V=\pi \int_{\frac{-\sqrt{7}-1}{2}}^{\frac{\sqrt{7}-1}{2}}(x+3)^2-\left(\frac{x^2}{x-1}\right)^2 dx\)
 

d.ii. \(V=51.42\ \text{u}^3 \text{ (by CAS) }\)

♦♦ Mean mark (d)(ii) 37%.

Filed Under: Partial Fractions, Quotient and Other Functions (SM), Solids of Revolution Tagged With: Band 3, Band 4, Band 5, smc-1154-10-Quotient functions/Asymptotes, smc-1154-30-Absolute value, smc-1154-50-Sketch graph, smc-1180-40-Other graphs, smc-1180-50-x-axis rotations

Graphs, SPEC2 2022 VCAA 1 MC

For the interval  `\frac{1}{2} \le x \le3`, the graph of  `y=|2 x-1|-|x-3|`  is the same as the graph of

  1. `y=-x-2`
  2. `y=3x-4`
  3. `y=x+2`
  4. `y=3x+2`
  5. `y=x-4`
Show Answers Only

`B`

Show Worked Solution

`text{Consider the graph (CAS):}`

`text{Interval:}\ \ \frac{1}{2} \le x \le3`

`text{Endpoints:}\ \ (1/2 , -2\frac{1}{2}),\ \ (3 , 5)`

`m = frac{7\frac{1}{2}}{2\frac{1}{2}} = 3`

`y-y_1` `= m(x-x_1)`  
`y-5` `= 3(x-3)`  
`y` `= 3x-4`  

 
`=>B`

Filed Under: Partial Fractions, Quotient and Other Functions (SM) Tagged With: Band 3, smc-1154-30-Absolute value

Algebra, SPEC1 2020 VCAA 4

Solve the inequality  `3 - x > 1/|x - 4|`  for `x`, expressing your answer in interval notation.  (4 marks)

Show Answers Only

`x ∈ (– oo, (7 – sqrt 5)/2)`

Show Worked Solution

`3 – x > 1/|x – 4|`

♦ Mean mark 46%.

`|x – 4| (3 – x) > 1`
 

`text(If)\ \ x – 4 > 0, x > 4`

`(x – 4) (3 – x)` `> 1`
`3x – x^2 – 12 + 4x` `> 1`
`-x^2 + 7x – 13` `> 0`

 
`Delta = 7^2 – 4 ⋅ 1 ⋅ 13 = -3 < 0`

`=>\ text(No Solutions)`
 

`text(If)\ \ x – 4 < 0, x < 4`

`-(x – 4) (3 – x)` `> 1`
`x^2 – 7x + 12` `> 1`
`x^2 – 7x + 11` `> 0`
`x` `= (7 +- sqrt(7^2 – 4 ⋅ 1 ⋅ 11))/2`
  `= (7 +- sqrt 5)/2`

`text(Combining solutions)`

`(x < (7 – sqrt 5)/2  ∪ x > (7 + sqrt 5)/2)  nn x < 4`

`x ∈ (– oo, (7 – sqrt 5)/2)`

Filed Under: Partial Fractions, Quotient and Other Functions (SM) Tagged With: Band 5, smc-1154-30-Absolute value

Algebra, SPEC1 2019 VCAA 2

Find all values of  `x`  for which  `|x - 4| = x/2 + 7`.  (3 marks)

Show Answers Only

`x = 22\ \ text(or)\ −2`

Show Worked Solution
`x – 4` `= x/2 + 7` `text(or)` `-(x-4)` `= x/2 + 7`
`2x – 8` `= x + 14`   `−2x + 8` `= x + 14`
`x` `= 22`   `3x` `= −6`
      `x` `= −2`

`:. x = 22\ \ text(or)\ −2`

Filed Under: Partial Fractions, Quotient and Other Functions (SM) Tagged With: Band 3, smc-1154-30-Absolute value

Copyright © 2014–2025 SmarterEd.com.au · Log in