Given the complex number \(z=a+b i\), where \(a \in R \backslash\{0\}\) and \(b \in R, \dfrac{4 z \bar{z}}{(z+\bar{z})^2}\) is equivalent to
- \(1+\left(\dfrac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right)^2\)
- \(4\bigl[\operatorname{Re}(z) \times \operatorname{Im}(z)\bigr]\)
- \(4\Bigl([\operatorname{Re}(z)]^2+[\operatorname{Im}(z)]^2\Bigr)\)
- \(4\Bigl[1+(\operatorname{Re}(z)+\operatorname{Im}(z))^2\Bigr]\)
- \(\dfrac{2 \times \operatorname{Im}(z)}{[\operatorname{Re}(z)]^2}\)