SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Complex Numbers, SPEC2 2024 VCAA 6 MC

Let  \(z=3+k i\)  where  \(k \in R\).

A value of \(k\) that makes  \(z^2+4 i z+3\)  purely imaginary is

  1. \(-2\)
  2. \(-1\)
  3. \(1\)
  4. \(2\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Substitute}\ \ z=3+ki\ \ \text{into equation:}\)

\(z^2+4iz+3\) \(=(3+ki)^2+4i(3+ki)+3\)  
  \(=9+6ki-k^2+12i-4k+3\)  
  \(=-k^2-4k+12 +(6k+12)i\)  

 
\(\text{Purely imaginary if}\ \ -k^2-4k+12=0:\)

\(k=-6, 2\)

\(\Rightarrow D\)

Filed Under: Basic Calculations (SM) Tagged With: Band 3, smc-1171-10-Basic Calculations

Complex Numbers, SPEC2 2020 VCAA 5 MC

Given the complex number \(z=a+b i\), where \(a \in R \backslash\{0\}\) and \(b \in R, \dfrac{4 z \bar{z}}{(z+\bar{z})^2}\) is equivalent to

  1. \(1+\left(\dfrac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right)^2\)
  2. \(4\bigl[\operatorname{Re}(z) \times \operatorname{Im}(z)\bigr]\)
  3. \(4\Bigl([\operatorname{Re}(z)]^2+[\operatorname{Im}(z)]^2\Bigr)\)
  4. \(4\Bigl[1+(\operatorname{Re}(z)+\operatorname{Im}(z))^2\Bigr]\)
  5. \(\dfrac{2 \times \operatorname{Im}(z)}{[\operatorname{Re}(z)]^2}\)
Show Answers Only

\(A\)

Show Worked Solution

\(z=a+i b, \quad \bar{z}=a-i b\)

\(\dfrac{4 z \bar{z}}{(z+\bar{z})^2}\) \(=\dfrac{4\left(a^2+b^2\right)}{4 a^2}\)
  \(=1+\left(\dfrac{b}{a}\right)^2\)
  \(=1+\left(\dfrac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right)^2\)

\(\Rightarrow A\)

Filed Under: Basic Calculations (SM) Tagged With: Band 4, smc-1171-10-Basic Calculations

Complex Numbers, SPEC2-NHT 2019 VCAA 4 MC

Which one of the following statements is false for  `z_1, z_2 ∈ C`?

  1. `z^(−1) = (barz)/(|z|^2), z != 0`
  2. `|z_1 + z_2| > |z_1| + |z_2|`
  3. `(z_1)/(z_2) = (z_1barz_2)/(|z_2|^2), z_2 != 0`
  4. `|z_1z_2| = |z_1||z_2|`
  5. `|(z_1)/(z_2)| = (|z_1|)/(|z_2|), z_2 != 0`
Show Answers Only

`B`

Show Worked Solution

`text(Consider each option:)`

`A.\ \ 1/z xx barz/barz = barz/(|z|^2)`

`B.`

`text(Using vectors:)\ |z_1 + z_2| < |z_1| + |z_2|`

`=>\ text(Incorrect (by triangle inequality))`
 

`C, D and E\ text(can be shown to be correct.)`

`=>\ B`

Filed Under: Basic Calculations (SM) Tagged With: Band 4, smc-1171-10-Basic Calculations

Complex Numbers, SPEC2 2012 VCAA 8 MC

If  `z = a + bi`, where both `a` and `b` are non-zero real numbers and  `z in C`, which of the following does not represent a real number?

  1. `z + barz`
  2. `|\ z\ |`
  3. `zbarz`
  4. `z^2-2abi`
  5. `(z-bar z) (z + bar z)`
Show Answers Only

`E`

Show Worked Solution

`text(Consider each option:)`

`text(A.) quad a + bi + a-bi = 2a`  ✔

`text(B.) quad sqrt(a^2 + b^2)`  ✔

`text(C.) quad (a + bi) (a-bi) = a^2 + b^2`  ✔

`text(D.) quad (a + bi)^2-2abi`

`= a^2 +2abi-b^2-2abi`

`= a^2-b^2`  ✔

`text(E.) quad (a + bi-(a-bi))((a + bi + a-bi))`

`= (2bi) (2a)`

`= 4abi`  ✖

 
`=> E`

Filed Under: Basic Calculations (SM) Tagged With: Band 4, smc-1171-10-Basic Calculations

Complex Numbers, SPEC2 2015 VCAA 6 MC

Which one of the following relations has a graph that passes through the point  `1 + 2i`  in the complex plane?

  1. `zbarz = sqrt5`
  2. `text(Arg)(z) = pi/3`
  3. `| z - 1 | = | z - 2i |`
  4. `text(Re)(z) = 2text(Im)(z)`
  5. `z + barz = 2`
Show Answers Only

`E`

Show Worked Solution

`text(Consider each option:)`

♦ Mean mark 43%.

`A:\ \ (1 + 2i)(1 – 2i) = 1 – 4i^2 = 5`

`B:\ \ alpha = tan^(−1)(2) != pi/3`

`C:\ \ |(1 + 2i)-1 | = |2i| = 2,\ \ |1 + 2i – 2i| = |1| = 1`

`D:\ \ text(Re)(z) = 1 != 2text(Im)(z)`

`E:\ \ 1 + 2i + 1 – 2i = 2\ \ text{(correct)}`

 
`=> E`

Filed Under: Basic Calculations (SM) Tagged With: Band 5, smc-1171-10-Basic Calculations

Complex Numbers, SPEC2 2018 VCAA 5 MC

Let  `z = a + bi`, where  `a, b in R\ text(\ {0})`

If  `z + 1/z \ in R`, which one of the following must be true?

  1. `text(Arg)(z) = pi/4`
  2. `a = -b`
  3. `a = b`
  4. `|z| = 1`
  5. `z^2 = 1` 
Show Answers Only

`D`

Show Worked Solution
`z + 1/z` `= a + bi + 1/(a + bi)`
  `= a + bi + (a – bi)/{(a + bi)(a – bi)}`
  `= a + bi + (a – bi)/(a^2 + b^2)`
  `= {(a + bi)(a^2 + b^2) + a – bi}/(a^2 + b^2)`
  `= {a(a^2 + b^2) + a}/(a^2 + b^2) + {b (a^2 + b^2) – b}/(a^2 + b^2)\ i`

 
`text(If)\ \ z + 1/z in R\ \ =>\  {b (a^2 + b^2) – b}/(a^2 + b^2) = 0`

 

`b(a^2 + b^2) – b = 0`

`b(a^2 + b^2 – 1) = 0`

`a^2 + b^2 = 1,\ \ (b !=0)`

`a^2 + b^2 = |z|^2 = 1`

`:. |z| = 1`

`=>  D`

Filed Under: Basic Calculations (SM), Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 5, smc-1171-10-Basic Calculations, smc-2597-20-Cartesian to Mod/Arg

Copyright © 2014–2025 SmarterEd.com.au · Log in