SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, SPEC2 2024 VCAA 13 MC

If the angle between the vectors  \(2 \underset{\sim}{ i }-\underset{\sim}{ j }+2 \underset{\sim}{ k }\)  and  \(2 \underset{\sim}{ i }+m \underset{\sim}{ j }+6 \underset{\sim}{ k }\)  is  \(\cos ^{-1}\left(\dfrac{13}{21}\right)\), then the value of \(m\), where  \(m \in R^{+}\), is

  1. \(2\)
  2. \(3\)
  3. \(4\)
  4. \(5\)
Show Answers Only

\(B\)

Show Worked Solution

\(\underset{\sim}{a}=\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)  \Rightarrow \abs{\underset{\sim}{a}}=\sqrt{9}=3\)

\(\underset{\sim}{b}=\left(\begin{array}{c}2 \\ m \\ 6\end{array}\right)  \Rightarrow \abs{\underset{\sim}{a}}=\sqrt{2^2+m^2+6^2}=\sqrt{40+m^2}\)

\(\underset{\sim}{a} \cdot \underset{\sim}{b}\) \(=\abs{\underset{\sim}{a}}\abs{\underset{\sim}{b}} \cos \theta\)  
\(16-m\) \(=3 \sqrt{40+m^2} \times \cos \left(\cos ^{-1}\left(\dfrac{13}{21}\right)\right)\)  

 
\(\text{Solve for \(m\) (by CAS):} \ 16-m=3 \sqrt{40+m^2} \times \dfrac{13}{21}\)

\(m=-\dfrac{241}{15}, 3\)

\(\Rightarrow B\)

Filed Under: Basic Concepts and Calculations Tagged With: Band 3, smc-1176-20-Angle between vectors

Vectors, SPEC1 2024 VCAA 4

Consider the vectors  \(\underset{\sim}{ a }=3 \underset{\sim}{ j }+3 \underset{\sim}{ k }, \ \underset{\sim}{ b }=2 \underset{\sim}{ i }-\underset{\sim}{ j }-2 \underset{\sim}{ k }\)  and  \(\underset{\sim}{ c }=n \underset{\sim}{ i }+2 \underset{\sim}{ j }+\underset{\sim}{ k }\),  where  \(n \in Z\).

  1. Find the angle between \(\underset{\sim}{ a }\) and \(\underset{\sim}{ b }\).   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find all possible values of \(n\) such that the dot product of \(\underset{\sim}{ a }\) and \(\underset{\sim}{ c }\) is equal to the magnitude of the cross product of \(\underset{\sim}{ a }\) and \(\underset{\sim}{c}\).   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.      \(\theta=\dfrac{3 \pi}{4}\left(\text{or} \ 135^{\circ}\right)\)

b.    \(n= \pm 2\)

Show Worked Solution

a.  \(\underset{\sim}{a}=\left(\begin{array}{l}0 \\ 3 \\ 3\end{array}\right) \Rightarrow \abs{\underset{\sim}{a}}=\sqrt{18}=3 \sqrt{2}\)

     \(\underset{\sim}{b}=\left(\begin{array}{c}2 \\ -1 \\ -2\end{array}\right) \Rightarrow\abs{\underset{\sim}{b}}=\sqrt{9}=3\)

     \(\underset{\sim}{c}=\left(\begin{array}{l}n \\ 2 \\ 1\end{array}\right) \Rightarrow \abs{\underset{\sim}{c}}=\sqrt{n^2+5}\)

     \(\cos \theta=\dfrac{\underset{\sim}{a} \cdot \underset{\sim}{b}}{\abs{\underset{\sim}{a}} \cdot \abs{\underset{\sim}{b}}}=\dfrac{-3-6}{3 \sqrt{2} \times 3}=-\dfrac{1}{\sqrt{2}}\)

    \(\therefore \theta=\cos ^{-1}\left(-\dfrac{1}{\sqrt{2}}\right)=\dfrac{3 \pi}{4}\left(\text{or} \ 135^{\circ}\right)\)
 

b.  \(\underset{\sim}{a} \times \underset{\sim}{c}=\left|\begin{array}{ccc}\underset{\sim}{i} & \underset{\sim}{j} & \underset{\sim}{k} \\ 0 & 3 & 3 \\ n & 2 & 1\end{array}\right|=-3\underset{\sim}{i}+3 n\underset{\sim}{j}-3 n \underset{\sim}{k}\)

     \(\abs{\underset{\sim}{a} \times \underset{\sim}{c}}=\sqrt{9+9n^2+9n^2}=\sqrt{18 n^2+9}\)

     \(\underset{\sim}{a} \cdot \underset{\sim}{c}=0 \times n + 3 \times 2 + 3 \times 1=9\)

     \(\text{Find \(n\) given:}\)

  \(\sqrt{18 n^2+9}\) \(=9\)
  \(18 n^2+9\) \(=81\)
  \(n^2\) \(=4\)
  \(n\) \(= \pm 2\)

Filed Under: Basic Concepts and Calculations Tagged With: Band 4, smc-1176-20-Angle between vectors, smc-1176-55-Cross product

Vectors, SPEC1 2022 VCAA 6a

Find the cosine of the acute angle between the vectors  `underset~a=2underset~i-3underset~j+6underset~k`  and  `underset~b=underset~i+2underset~j+2underset~k`.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`8/21`

Show Worked Solution
`cos \ theta` `=(underset~a*underset~b)/(|underset~a||underset~b|)`  
  `=(2-6+12)/(sqrt(4+9+36)\ sqrt(1+4+4))`  
  `=8/(7 xx 3)`  
  `=8/21`  

Filed Under: Basic Concepts and Calculations Tagged With: Band 3, smc-1176-20-Angle between vectors

Vectors, SPEC2 2023 VCAA 5

The points with coordinates \(A(1,1,2), B(1,2,3)\) and \(C(3,2,4)\) all lie in a plane \(\Pi\).

  1. Find the vectors \(\overrightarrow{A B}\) and \(\overrightarrow{A C}\), and hence show that the area of triangle \(A B C\) is 1.5 square units.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Find the shortest distance from point \(B\) to the line segment \(A C\).  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

A second plane, \(\psi\), has the Cartesian equation  \(2 x-2 y-z=-18\).

  1. At what acute angle does the line given by \(\underset{\sim}{ r }(t)=3 \underset{\sim}{ i }+2 \underset{\sim}{ j }+4 \underset{\sim}{ k }+t(\underset{\sim}{ i }-2 \underset{\sim}{ j }+2\underset{\sim}{ k }), t \in R\), intersect the plane \(\psi\) ? Give your answer in degrees correct to the nearest degree.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

A line \(L\) passes through the origin and is normal to the plane \(\psi\). The line \(L\) intersects \(\psi\) at a point \(D\).

  1. Write down an equation of the line \(L\) in parametric form.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the shortest distance from the origin to the plane \(\psi\).  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Find the coordinates of point \(D\).  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

a.     \(\overrightarrow{A B}  =\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\)
  \(\overrightarrow{A C}  =\overrightarrow{O C}-\overrightarrow{O A}=\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)\)

\(\text{Area}=\dfrac{1}{2}\ \bigg|\overrightarrow{AB} \times \overrightarrow{AC}\bigg|=\dfrac{1}{2}\ \left|\begin{array}{ccc}\underset{\sim}{i} & \underset{\sim}{j} & \underset{\sim}{k} \\ 0 & 1 & 1 \\ 2 & 1 & 2\end{array}\right|=\dfrac{1}{2}\ \bigg|\underset{\sim}{i}+2 \underset{\sim}{j}-2 \underset{\sim}{k}\bigg|=\dfrac{3}{2}\)

b.    \(\text {Shortest distance }=1 \text { unit }\)

c.     \(26^{\circ}\)

d.    \(\underset{\sim}{r}(t)=\underset{\sim}{n} \times t=2 t \underset{\sim}{i}-2 t \underset{\sim}{j}-t \underset{\sim}{k}\)

\(x=2 t, y=-2 t, z=-t \quad \text{(also accepted)}\)

e.    \(\text {Shortest distance }=6\)

f.    \(D(-4,4,2)\)

Show Worked Solution

a.     \(\overrightarrow{A B}  =\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\)
  \(\overrightarrow{A C}  =\overrightarrow{O C}-\overrightarrow{O A}=\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)\)

\(\text{Area}=\dfrac{1}{2}\ \bigg|\overrightarrow{AB} \times \overrightarrow{AC}\bigg|=\dfrac{1}{2}\ \left|\begin{array}{ccc}\underset{\sim}{i} & \underset{\sim}{j} & \underset{\sim}{k} \\ 0 & 1 & 1 \\ 2 & 1 & 2\end{array}\right|=\dfrac{1}{2}\ \bigg|\underset{\sim}{i}+2 \underset{\sim}{j}-2 \underset{\sim}{k}\bigg|=\dfrac{3}{2}\)

 
b.   
\(\text {In } \triangle ABC \text {, shortest distance of } B \text { to } A C\ \text {is the} \perp \text {distance }\)

\(|\overrightarrow{A C}|= \displaystyle{\sqrt{2^2+1^2+2^2}}=3\)

\(\dfrac{3}{2}=\dfrac{1}{2}\ |\overrightarrow{A C}| \times h \ \Rightarrow \ h=1\)

\(\therefore \text { Shortest distance }=1 \text { unit }\)
 

♦♦ Mean mark (b) 35%.

c.    \(\text {Vector} \perp \text {to plane}\ \psi\  \text {is}\ \ \underset{\sim}{n}=2 \underset{\sim}{i}-2 \underset{\sim}{j}-\underset{\sim}{k}\)

\(\text{Parallel line to}\ \underset{\sim}{r}(t) \ \text{is}\ \ \underset{\sim}{m}=\underset{\sim}{i}-2 \underset{\sim}{j}+2\underset{\sim}{k}\)

\(\text{Find angle } \alpha \text{ between }\underset{\sim}{n} \text{ and } \underset{\sim}{m},\)

\(\text{Solve for } \alpha:\)

\((2 \underset{\sim}{i}-2 \underset{\sim}{j}-\underset{\sim}{k})(\underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{2 k})=3 \times 3 \times \cos \, \alpha\)

\(\Rightarrow \alpha=64^{\circ} \text { (nearest degree) }\)
 

\(\text{Find angle } \theta \text{ between } \underset{\sim}{m} \text{ and plane } \psi :\)

\(\theta=90-64=26^{\circ}\)
 

d.    \(\underset{\sim}{r}(t)=\underset{\sim}{n} \times t=2 t \underset{\sim}{i}-2 t \underset{\sim}{j}-t \underset{\sim}{k}\)

\(x=2 t, y=-2 t, z=-t \quad \text{(also accepted)}\)
 

♦ Mean mark (d) 52%.

e.    \(|\overrightarrow{OD}|=\text{shortest distance from } O \text{ to plane } \psi\).

\(\Rightarrow D \text{ is on } L \text{ and } \psi\)

\(\text{Solve for } t: \  2(2 t)-2(-2 t)-(t)=-18\)

\(\Rightarrow t=-2\)

\(|\overrightarrow{OD}|=-4 \underset{\sim}{i}+4 \underset{\sim}{j}+2 \underset{\sim}{k}\)

\(\text {Shortest distance }=\displaystyle{\sqrt{(-4)^2+4^2+2^2}}=6\)
 

f.    \(\overrightarrow{OD}=-4 \underset{\sim}{i}+4 \underset{\sim}{j}+2 \underset{\sim}{i}\)

\(D(-4,4,2)\)

♦ Mean mark (f) 41%.

Filed Under: Basic Concepts and Calculations, Vector Lines, Planes and Geometry Tagged With: Band 4, Band 5, smc-1176-20-Angle between vectors, smc-1176-45-Vector planes, smc-1177-40-Triangles, smc-1177-50-2D problems

Vectors, SPEC2 2021 VCAA 12 MC

Consider the vectors  `underset~a = x underset~i + underset~j, \ underset~b = underset~i - underset~j`  and  `underset~c = underset~i + x underset~j`.

Given that  `theta`  is the angle between  `underset~a`  and  `underset~b`,  and  `phi`  is the angle between  `underset~b`  and  `underset~c, cos(theta) cos (phi)`  is

  1. `(2(1 + x^2))/(1 - x^2)`
  2. `(sqrt2(1 - x^2))/(1 + x^2)`
  3. `-((x + 1)^2)/(2(1 + x^2))`
  4. `-((x - 1)^2)/(2(1 + x^2))`
  5. `(sqrt2(1 + x^2))/(1 - x^2)`
Show Answers Only

`D`

Show Worked Solution

`underset~a = x underset~i – underset~j, \ underset~b = underset~i – underset~j, \ underset~c = underset~i + x underset~j`

`underset~a · underset~b = |underset~a||underset~b|costheta`

`costheta = (x – 1)/(sqrt(x^2 + 1)sqrt2)`

`cos phi = (underset~b · underset~c)/(|underset~b||underset~c|) = (1 – x)/(sqrt2 sqrt(1 – x^2))`

`costheta · cos phi` `= ((x – 1)(1 – x))/(2(1 + x^2))`
  `= -((x – 1)^2)/(2(1 + x^2))`

 
`=>\ D`

Filed Under: Basic Concepts and Calculations Tagged With: Band 4, smc-1176-20-Angle between vectors

Vectors, SPEC2 2020 VCAA 16 MC

Let  `underset~a = underset~i + 2underset~j + 2underset~k`  and  `underset~b = 2underset~i - 4underset~j + 4underset~k`, where the acute angle between these vectors is  `theta`.

The value of  `sin(2theta)`  is

  1. `1/9`
  2. `(4sqrt5)/9`
  3. `(4sqrt5)/81`
  4. `(8sqrt5)/81`
  5. `(2sqrt46)/25`
Show Answers Only

`D`

Show Worked Solution

`underset~a = ((1),(2),(2)), |underset~a| = sqrt(1 + 4 + 4) = 3`

`underset~b = ((2),(−4),(4)) , |underset~b| = sqrt(4 + 16 + 16) = 6`

`underset~a · underset~b = ((1),(2),(2))((1),(−4),(4)) = 2 – 8 + 8 = 2`

`costheta = (underset~a · underset~b)/(|underset~a||underset~b|) = 2/(3 xx 6) = 1/9`
 

`sintheta = sqrt(81 – 1)/9 = (4sqrt5)/9`

`:. sin(2theta)` `= 2 xx 1/9 xx (4sqrt5)/9`
  `= (8sqrt5)/81`

 
`=>D`

Filed Under: Basic Concepts and Calculations Tagged With: Band 4, smc-1176-20-Angle between vectors

Vectors, SPEC2-NHT 2019 VCAA 12 MC

Given that `theta` is the acute angle between the vectors  `underset~a = −2underset~i + 2underset~j - underset~k`  and  `underset~b = −4underset~i + 4underset~j + 7underset~k`, then  `sin(2theta)` is equal to

  1.  `2sqrt2`
  2.  `(4sqrt2)/9`
  3.  `(2sqrt2)/9`
  4.  `(2sqrt2)/3`
  5.  `(4sqrt2)/3`
Show Answers Only

`B`

Show Worked Solution

`underset~a = ((−2),(2),(−1)), \ |underset~a| = sqrt(4 + 4 + 1) = 3`

`underset~b = ((−4),(4),(7)), \ |underset~b| = sqrt(16 + 16 + 49) = 9`

`underset~a · underset~b = ((−2),(2),(−1))((−4),(4),(7)) = 8 + 8 – 7 = 9`

`costheta = (underset~a · underset~b)/(|underset~a||underset~b|) = 9/(3 xx 9) = 1/3`

`sintheta` `= sqrt8/3`
`sin2theta` `= 2sinthetacostheta`
  `= 2 · sqrt8/3 · 1/3`
  `= (4sqrt2)/9`

`=>\ B`

Filed Under: Basic Concepts and Calculations Tagged With: Band 4, smc-1176-20-Angle between vectors

Vectors, SPEC2 2011 VCAA 12 MC

The angle between the vectors  `3underset~i + 6underset~j - 2underset~k`  and  `2underset~i - 2underset~j + underset~k`, correct to the nearest tenth of a degree, is

A.       2.0°

B.     91.0°

C.   112.4°

D.   121.3°

E.   124.9°

Show Answers Only

`C`

Show Worked Solution

`|3underset~i + 6underset~j – 2underset~k| = sqrt(9 + 36 + 4) = sqrt49 = 7`

`|2underset~i – 2underset~j + underset~k| = sqrt(4 + 4 + 1) = sqrt9 = 3`

`(3underset~i + 6underset~j – 2underset~k) * (2underset~i – 2underset~j + underset~k)`

`= 3 xx 2 + 6 xx (−2) + (−2) xx 1`

`= 6 – 12 – 2`

`= -8\ \ text{(do calculations on CAS)}`
  

`costheta` `= ((3tildei + 6tildej – 2tildek).(2tildei – 2tildej + tildek))/(|\ 3tildei + 6tildej – 2tildek\ ||\ 2tildei – 2tildej + tildek\ |)`
  `= −8/21`
`:. theta` `= cos^(−1)(−8/12)`
  `~~ 112.4^@`

 
`=> C`

Filed Under: Basic Concepts and Calculations Tagged With: Band 3, smc-1176-20-Angle between vectors

Vectors, SPEC2 2014 VCAA 15 MC

If  `theta`  is the angle between  `underset ~a = sqrt 3 underset ~i + 4 underset ~j - underset ~k`  and  `underset ~b = underset ~i - 4 underset ~j + sqrt 3 underset ~k`, then  `cos(2 theta)`  is

  1. `−4/5`
  2.    `7/25`
  3. `−7/25`
  4.    `14/25`
  5. `−24/25`
Show Answers Only

`B`

Show Worked Solution
`underset ~a ⋅ underset ~b` `= sqrt 3 xx 1 + 4 xx (-4) + (-1) xx sqrt 3`
  `= -16`

 
`|\ underset~a\ | = sqrt20,\ \ |\ underset~b\ | = sqrt20,`

`cos(theta)` `=(underset ~a ⋅ underset ~b)/(|\ underset~a\ |\ |\ underset~b\ | `
  `= (-16)/(sqrt 20 xx sqrt 20)`
  `= -4/5`

 

`cos (2 theta)` `= 2cos^2theta – 1`
  `= 2(-4/5)^2 – 1`
  `= 7/25`

 
`=> B`

Filed Under: Basic Concepts and Calculations Tagged With: Band 4, smc-1176-20-Angle between vectors

Vectors, SPEC2 2015 VCAA 17 MC

Points  `A`, `B` and `C` have position vectors  `underset~a = 2underset~i + underset~j`,  `underset~b = 3underset~i - underset~j + underset~k`  and  `underset~c = -3underset~j + underset~k`  respectively.

The cosine of angle `ABC` is equal to

  1. `5/(sqrt6sqrt10)`
  2. `7/(sqrt6sqrt13)`
  3. `-1/(sqrt6sqrt13)`
  4. `-7/(sqrt21sqrt6)`
  5. `-2/(sqrt6sqrt13)`
Show Answers Only

`C`

Show Worked Solution

`vec(BA) = vec(OA) – vec(OB) = -tildei + 2tildej – tildek`

♦ Mean mark 48%.

`=>\ |\ vec(BA)\ | = sqrt6`

`vec(BC) = vec(OC) – vec(OB) = -3tildei – 2tildej`

`=>\ |\ vec(BC)\ | = sqrt13`
 

`vec(BA).vec(BC)` `= |\ vec(BA)\ ||\ vec(BC)\ |cos angleABC`
`cos angleABC` `= (vec(BA).vec(BC))/(|\ vec(BA)\ ||\ vec(BC)\ |)`
  `= (-3xx-1 + 2 xx – 2)/(sqrt6sqrt13)`
  `= (-1)/(sqrt6sqrt13)`

`=> C`

Filed Under: Basic Concepts and Calculations Tagged With: Band 5, smc-1176-20-Angle between vectors

Vectors, SPEC1-NHT 2017 VCAA 10

Consider the vectors  `underset ~a = - underset ~i - 2 underset ~j + 3 underset ~k`  and  `underset ~b = 2 underset ~i + c underset ~j + underset ~k`.

Find the value of  `c, \ c in R`, if the angle between  `underset ~a`  and  `underset ~b`  is  `pi/3`.  (4 marks)

Show Answers Only

`c = -3`

Show Worked Solution
`underset ~a ⋅ underset ~b` `= -1 xx 2 + (-2) xx c + 3 xx 1`
  `= -2 – 2c + 3`
  `= 1 – 2c`

 

`1-2c` `= sqrt((-1)^2 + (-2)^2 + 3^3) *sqrt(2^2 + c^2 + 1^2) xx cos (pi/3)`
`1 – 2c` `= 1/2(sqrt 14 ⋅ sqrt(5 + c^2))`
`2 – 4c` `= sqrt(14(5 + c^2))`
`(2 – 4c)^2` `= 14(5 + c^2)`
`4 – 16c + 16c^2` `= 70 + 14c^2`
`2c^2 – 16c – 66` `= 0`
`c^2 – 8c – 33` `= 0`
`(c – 11)(c + 3)` `= 0`

 
`c = 11 or c = -3`

`text(S)text(ince)\ \ 2 – 4c = sqrt(15(5 + c^2))`

`2 – 4c > 0\ \ =>\ \ c<2`

`:. c = -3`

Filed Under: Basic Concepts and Calculations Tagged With: Band 4, smc-1176-20-Angle between vectors

Vectors, SPEC1 2014 VCAA 1

Consider the vector  `underset ~a = sqrt 3 underset ~i - underset ~j - sqrt 2 underset ~k`, where  `underset ~i, underset ~j`  and  `underset ~k`  are unit vectors in the positive directions of the `x, y` and `z` axes respectively.

  1. Find the unit vector in the direction of  `underset ~a`.  (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the acute angle that  `underset ~a`  makes with the positive direction of the `x`-axis.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3. The vector  `underset ~b = 2 sqrt 3 underset ~i + m underset ~j - 5 underset ~k`.
  4. Given that  `underset ~b`  is perpendicular to  `underset ~a,` find the value of `m`.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

  1. `1/sqrt 6 (sqrt 3 underset ~i – underset ~j – sqrt 2 underset ~k)`
  2. `theta = 45^@`
  3. `m = 6 + 5 sqrt 2`

Show Worked Solution

a.    `|underset ~a|` `= sqrt((sqrt 3)^2 + (-1)^2 + (-sqrt 2)^2)`
    `= sqrt 6`
`:. hat underset ~a` `= underset ~a/|underset ~a|`
  `= 1/sqrt 6 (sqrt 3 underset ~i – underset ~j – sqrt 2 underset ~k)`

 

Mean mark part (b) 51%.

b.    `underset ~a ⋅ underset ~i` `= sqrt 3 xx 1 = sqrt 3`
  `underset ~a ⋅ underset ~i` `= |underset ~a||underset ~i| cos theta`
    `= sqrt 6 cos theta`
  `sqrt 3` `= sqrt 6 cos theta`
`cos theta` `= 1/sqrt 2`
`:. theta` `= pi/4 = 45^@`

 

c.   `underset ~a ⋅ underset ~b = sqrt 3 (2 sqrt 3) + (-1)(m) + (-sqrt 2)(-5) = 0`

`6 – m + 5 sqrt 2` `=0`  
`:. m` `=6 + 5 sqrt 2`  

Filed Under: Basic Concepts and Calculations Tagged With: Band 3, Band 4, smc-1176-20-Angle between vectors, smc-1176-30-Perpendicular vectors

Vectors, SPEC1 2017 VCAA 5

Relative to a fixed origin, the points `B`, `C` and `D` are defined respectively by the position vectors  `underset~b = underset~i - underset~j + 2underset~k, \ underset~c = 2underset~i - underset~j + underset~k`  and  `underset~d = aunderset~i - 2underset~j`  where `a` is a real constant.

Given that the magnitude of angle `BCD` is  `pi/3`, find `a`.  (4 marks)

Show Answers Only

`a = −2`

Show Worked Solution

`text(Angle between)\ overset(->)(CB)\ text(and)\ overset(->)(CD) = pi/3`

♦ Mean mark 45%.

`overset(->)(CB)` `= (1 – 2)underset~i + (−1 – −1)underset~j + (2 – 1)underset~k`
  `= −underset~i + underset~k`
`overset(->)(CD)` `= (a – 2)underset~i + (−2 – −1)underset~j + (−1 + 0)underset~k`
  `= (a – 2)underset~i – underset~j – underset~k`

 

`overset(->)(CD) · overset(->)(CB)` `= −(a – 2) + 0 – 1`
  `= 1 – a`
  `= |overset(->)(CD)||overset(->)(CB)|cos(pi/3)`

 

`1 – a` `= sqrt((a – 2)^2 + (−1)^2 + (−1)^2)sqrt((−1)^2 + (1)^2)cos(pi/3)`
`1 + a` `= sqrt(a^2 – 4a + 4 + 1 + 1) xx sqrt2 xx 1/2`
`2(1 – a)` `= sqrt(2a^2 – 8a + 12), \ \ a < 1`
`4(1 – a)^2` `= 2a^2 – 8a + 12, \ \ a < 1`
`4(1 – 2a + a^2)` `= 2a^2 – 8a + 12`
`4 – 8a + 4a^2` `= 2a^2 – 8a + 12`
`2a^2` `= 8`
`a^2` `= 4`
`:. a` `= −2\ \ \ (a<1)`

Filed Under: Basic Concepts and Calculations Tagged With: Band 5, smc-1176-20-Angle between vectors

Vectors, SPEC2-NHT 2018 VCAA 11 MC

Let  `underset ~a = 2 underset ~i - 2 underset ~j + underset ~k`  and  `underset ~b = 2 underset ~i + 3 underset ~j + 6 underset ~k`.

The acute angle between  `underset ~a`  and  `underset ~b`  is closest to

  1. `11º`
  2. `75º`
  3. `79º`
  4. `86º`
  5. `88º`
Show Answers Only

`C`

Show Worked Solution
`underset ~a ⋅ underset ~b` `= 4 – 6 + 6 = 4`
`4` `=sqrt(4 + 4 + 1) sqrt(4 + 9 + 36) cos theta`
`4` `= sqrt 9 xx sqrt 49 cos theta`
`4` `= 21 cos theta`
`theta` `= cos^(-1) (4/21)`
`:. theta` `= 79.0194…`

 
`=>  C`

Filed Under: Basic Concepts and Calculations Tagged With: Band 3, smc-1176-20-Angle between vectors

Vectors, SPEC2 2018 VCAA 11 MC

Consider the vectors given by  `underset ~a = m underset ~i + underset ~j`  and  `underset ~b = underset ~i + m underset ~j`, where  `m in R`.

If the acute angle between  `underset ~a`  and  `underset ~b`  is 30°, then `m` equals

  1. `sqrt 2 +- 1`
  2. `2 +- sqrt 3`
  3. `sqrt 3, 1/sqrt 3`
  4. `sqrt 3/(4 - sqrt 3)`
  5. `sqrt 39/13` 
Show Answers Only

`C`

Show Worked Solution
`underset ~a *underset ~b` `= m + m = 2m`
`underset ~a *underset ~b` `= |underset ~a||underset ~b| cos 30^@`
  `= sqrt(m^2 + 1) *sqrt(1 + m^2) *cos 30^@`
  `= {(m^2 + 1) sqrt 3}/2`

 

`{(m^2 + 1) sqrt 3}/2` `=2m`  
`m^2 sqrt 3 + sqrt 3` `=4m`  
`m^2 sqrt 3 – 4m + sqrt 3` `=0`  
`(sqrt 3 m)^2 – 4(sqrt 3 m) + 3` `=0`  
`(sqrt 3 m)^2 – 4(sqrt 3 m) + 2^2 – 1` `=0`  
`(sqrt 3 m – 2)^2 – 1` `=0`  
`sqrt 3 m – 2` `= +-1`  
`sqrt 3 m` `= 2 +- 1`  

 
`:. m = (2 +- 1)/sqrt 3 = 3/sqrt 3 or 1/sqrt 3`

`= sqrt 3, 1/sqrt 3`

`=>  C`

Filed Under: Basic Concepts and Calculations Tagged With: Band 3, smc-1176-20-Angle between vectors

Copyright © 2014–2025 SmarterEd.com.au · Log in