Find the cosine of the acute angle between the vectors `underset~a=2underset~i-3underset~j+6underset~k` and `underset~b=underset~i+2underset~j+2underset~k`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find the cosine of the acute angle between the vectors `underset~a=2underset~i-3underset~j+6underset~k` and `underset~b=underset~i+2underset~j+2underset~k`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`8/21`
`cos \ theta` | `=(underset~a*underset~b)/(|underset~a||underset~b|)` | |
`=(2-6+12)/(sqrt(4+9+36)\ sqrt(1+4+4))` | ||
`=8/(7 xx 3)` | ||
`=8/21` |
The points with coordinates \(A(1,1,2), B(1,2,3)\) and \(C(3,2,4)\) all lie in a plane \(\Pi\). --- 5 WORK AREA LINES (style=lined) --- --- 3 WORK AREA LINES (style=lined) --- A second plane, \(\psi\), has the Cartesian equation \(2 x-2 y-z=-18\). --- 4 WORK AREA LINES (style=lined) --- A line \(L\) passes through the origin and is normal to the plane \(\psi\). The line \(L\) intersects \(\psi\) at a point \(D\). --- 2 WORK AREA LINES (style=lined) --- --- 3 WORK AREA LINES (style=lined) --- --- 5 WORK AREA LINES (style=lined) --- \(\text{Area}=\dfrac{1}{2}\ \bigg|\overrightarrow{AB} \times \overrightarrow{AC}\bigg|=\dfrac{1}{2}\ \left|\begin{array}{ccc}\underset{\sim}{i} & \underset{\sim}{j} & \underset{\sim}{k} \\ 0 & 1 & 1 \\ 2 & 1 & 2\end{array}\right|=\dfrac{1}{2}\ \bigg|\underset{\sim}{i}+2 \underset{\sim}{j}-2 \underset{\sim}{k}\bigg|=\dfrac{3}{2}\) b. \(\text {Shortest distance }=1 \text { unit }\) c. \(26^{\circ}\) d. \(\underset{\sim}{r}(t)=\underset{\sim}{n} \times t=2 t \underset{\sim}{i}-2 t \underset{\sim}{j}-t \underset{\sim}{k}\) \(x=2 t, y=-2 t, z=-t \quad \text{(also accepted)}\) e. \(\text {Shortest distance }=6\) f. \(D(-4,4,2)\) \(\text{Area}=\dfrac{1}{2}\ \bigg|\overrightarrow{AB} \times \overrightarrow{AC}\bigg|=\dfrac{1}{2}\ \left|\begin{array}{ccc}\underset{\sim}{i} & \underset{\sim}{j} & \underset{\sim}{k} \\ 0 & 1 & 1 \\ 2 & 1 & 2\end{array}\right|=\dfrac{1}{2}\ \bigg|\underset{\sim}{i}+2 \underset{\sim}{j}-2 \underset{\sim}{k}\bigg|=\dfrac{3}{2}\) \(|\overrightarrow{A C}|= \displaystyle{\sqrt{2^2+1^2+2^2}}=3\) \(\dfrac{3}{2}=\dfrac{1}{2}\ |\overrightarrow{A C}| \times h \ \Rightarrow \ h=1\) \(\therefore \text { Shortest distance }=1 \text { unit }\) c. \(\text {Vector} \perp \text {to plane}\ \psi\ \text {is}\ \ \underset{\sim}{n}=2 \underset{\sim}{i}-2 \underset{\sim}{j}-\underset{\sim}{k}\) \(\text{Parallel line to}\ \underset{\sim}{r}(t) \ \text{is}\ \ \underset{\sim}{m}=\underset{\sim}{i}-2 \underset{\sim}{j}+2\underset{\sim}{k}\) \(\text{Find angle } \alpha \text{ between }\underset{\sim}{n} \text{ and } \underset{\sim}{m},\) \(\text{Solve for } \alpha:\) \((2 \underset{\sim}{i}-2 \underset{\sim}{j}-\underset{\sim}{k})(\underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{2 k})=3 \times 3 \times \cos \, \alpha\) \(\Rightarrow \alpha=64^{\circ} \text { (nearest degree) }\) \(\text{Find angle } \theta \text{ between } \underset{\sim}{m} \text{ and plane } \psi :\) \(\theta=90-64=26^{\circ}\) d. \(\underset{\sim}{r}(t)=\underset{\sim}{n} \times t=2 t \underset{\sim}{i}-2 t \underset{\sim}{j}-t \underset{\sim}{k}\) \(x=2 t, y=-2 t, z=-t \quad \text{(also accepted)}\) e. \(|\overrightarrow{OD}|=\text{shortest distance from } O \text{ to plane } \psi\). \(\Rightarrow D \text{ is on } L \text{ and } \psi\) \(\text{Solve for } t: \ 2(2 t)-2(-2 t)-(t)=-18\) \(\Rightarrow t=-2\) \(|\overrightarrow{OD}|=-4 \underset{\sim}{i}+4 \underset{\sim}{j}+2 \underset{\sim}{k}\) \(\text {Shortest distance }=\displaystyle{\sqrt{(-4)^2+4^2+2^2}}=6\) f. \(\overrightarrow{OD}=-4 \underset{\sim}{i}+4 \underset{\sim}{j}+2 \underset{\sim}{i}\) \(D(-4,4,2)\)
a.
\(\overrightarrow{A B} =\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\)
\(\overrightarrow{A C} =\overrightarrow{O C}-\overrightarrow{O A}=\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)\)
a.
\(\overrightarrow{A B} =\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\)
\(\overrightarrow{A C} =\overrightarrow{O C}-\overrightarrow{O A}=\left(\begin{array}{l}3 \\ 2 \\ 4\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)\)
b. \(\text {In } \triangle ABC \text {, shortest distance of } B \text { to } A C\ \text {is the} \perp \text {distance }\)
Consider the vectors `underset~a = x underset~i + underset~j, \ underset~b = underset~i - underset~j` and `underset~c = underset~i + x underset~j`.
Given that `theta` is the angle between `underset~a` and `underset~b`, and `phi` is the angle between `underset~b` and `underset~c, cos(theta) cos (phi)` is
`D`
`underset~a = x underset~i – underset~j, \ underset~b = underset~i – underset~j, \ underset~c = underset~i + x underset~j`
`underset~a · underset~b = |underset~a||underset~b|costheta`
`costheta = (x – 1)/(sqrt(x^2 + 1)sqrt2)`
`cos phi = (underset~b · underset~c)/(|underset~b||underset~c|) = (1 – x)/(sqrt2 sqrt(1 – x^2))`
`costheta · cos phi` | `= ((x – 1)(1 – x))/(2(1 + x^2))` |
`= -((x – 1)^2)/(2(1 + x^2))` |
`=>\ D`
Let `underset~a = underset~i + 2underset~j + 2underset~k` and `underset~b = 2underset~i - 4underset~j + 4underset~k`, where the acute angle between these vectors is `theta`.
The value of `sin(2theta)` is
`D`
`underset~a = ((1),(2),(2)), |underset~a| = sqrt(1 + 4 + 4) = 3`
`underset~b = ((2),(−4),(4)) , |underset~b| = sqrt(4 + 16 + 16) = 6`
`underset~a · underset~b = ((1),(2),(2))((1),(−4),(4)) = 2 – 8 + 8 = 2`
`costheta = (underset~a · underset~b)/(|underset~a||underset~b|) = 2/(3 xx 6) = 1/9`
`sintheta = sqrt(81 – 1)/9 = (4sqrt5)/9`
`:. sin(2theta)` | `= 2 xx 1/9 xx (4sqrt5)/9` |
`= (8sqrt5)/81` |
`=>D`
Given that `theta` is the acute angle between the vectors `underset~a = −2underset~i + 2underset~j - underset~k` and `underset~b = −4underset~i + 4underset~j + 7underset~k`, then `sin(2theta)` is equal to
`B`
`underset~a = ((−2),(2),(−1)), \ |underset~a| = sqrt(4 + 4 + 1) = 3`
`underset~b = ((−4),(4),(7)), \ |underset~b| = sqrt(16 + 16 + 49) = 9`
`underset~a · underset~b = ((−2),(2),(−1))((−4),(4),(7)) = 8 + 8 – 7 = 9`
`costheta = (underset~a · underset~b)/(|underset~a||underset~b|) = 9/(3 xx 9) = 1/3`
`sintheta` | `= sqrt8/3` |
`sin2theta` | `= 2sinthetacostheta` |
`= 2 · sqrt8/3 · 1/3` | |
`= (4sqrt2)/9` |
`=>\ B`
The angle between the vectors `3underset~i + 6underset~j - 2underset~k` and `2underset~i - 2underset~j + underset~k`, correct to the nearest tenth of a degree, is
A. 2.0°
B. 91.0°
C. 112.4°
D. 121.3°
E. 124.9°
`C`
`|3underset~i + 6underset~j – 2underset~k| = sqrt(9 + 36 + 4) = sqrt49 = 7`
`|2underset~i – 2underset~j + underset~k| = sqrt(4 + 4 + 1) = sqrt9 = 3`
`(3underset~i + 6underset~j – 2underset~k) * (2underset~i – 2underset~j + underset~k)`
`= 3 xx 2 + 6 xx (−2) + (−2) xx 1`
`= 6 – 12 – 2`
`= -8\ \ text{(do calculations on CAS)}`
`costheta` | `= ((3tildei + 6tildej – 2tildek).(2tildei – 2tildej + tildek))/(|\ 3tildei + 6tildej – 2tildek\ ||\ 2tildei – 2tildej + tildek\ |)` |
`= −8/21` |
`:. theta` | `= cos^(−1)(−8/12)` |
`~~ 112.4^@` |
`=> C`
If `theta` is the angle between `underset ~a = sqrt 3 underset ~i + 4 underset ~j - underset ~k` and `underset ~b = underset ~i - 4 underset ~j + sqrt 3 underset ~k`, then `cos(2 theta)` is
`B`
`underset ~a ⋅ underset ~b` | `= sqrt 3 xx 1 + 4 xx (-4) + (-1) xx sqrt 3` |
`= -16` |
`|\ underset~a\ | = sqrt20,\ \ |\ underset~b\ | = sqrt20,`
`cos(theta)` | `=(underset ~a ⋅ underset ~b)/(|\ underset~a\ |\ |\ underset~b\ | ` |
`= (-16)/(sqrt 20 xx sqrt 20)` | |
`= -4/5` |
`cos (2 theta)` | `= 2cos^2theta – 1` |
`= 2(-4/5)^2 – 1` | |
`= 7/25` |
`=> B`
Points `A`, `B` and `C` have position vectors `underset~a = 2underset~i + underset~j`, `underset~b = 3underset~i - underset~j + underset~k` and `underset~c = -3underset~j + underset~k` respectively.
The cosine of angle `ABC` is equal to
`C`
`vec(BA) = vec(OA) – vec(OB) = -tildei + 2tildej – tildek`
`=>\ |\ vec(BA)\ | = sqrt6`
`vec(BC) = vec(OC) – vec(OB) = -3tildei – 2tildej`
`=>\ |\ vec(BC)\ | = sqrt13`
`vec(BA).vec(BC)` | `= |\ vec(BA)\ ||\ vec(BC)\ |cos angleABC` |
`cos angleABC` | `= (vec(BA).vec(BC))/(|\ vec(BA)\ ||\ vec(BC)\ |)` |
`= (-3xx-1 + 2 xx – 2)/(sqrt6sqrt13)` | |
`= (-1)/(sqrt6sqrt13)` |
`=> C`
Consider the vectors `underset ~a = - underset ~i - 2 underset ~j + 3 underset ~k` and `underset ~b = 2 underset ~i + c underset ~j + underset ~k`.
Find the value of `c, \ c in R`, if the angle between `underset ~a` and `underset ~b` is `pi/3`. (4 marks)
`c = -3`
`underset ~a ⋅ underset ~b` | `= -1 xx 2 + (-2) xx c + 3 xx 1` |
`= -2 – 2c + 3` | |
`= 1 – 2c` |
`1-2c` | `= sqrt((-1)^2 + (-2)^2 + 3^3) *sqrt(2^2 + c^2 + 1^2) xx cos (pi/3)` |
`1 – 2c` | `= 1/2(sqrt 14 ⋅ sqrt(5 + c^2))` |
`2 – 4c` | `= sqrt(14(5 + c^2))` |
`(2 – 4c)^2` | `= 14(5 + c^2)` |
`4 – 16c + 16c^2` | `= 70 + 14c^2` |
`2c^2 – 16c – 66` | `= 0` |
`c^2 – 8c – 33` | `= 0` |
`(c – 11)(c + 3)` | `= 0` |
`c = 11 or c = -3`
`text(S)text(ince)\ \ 2 – 4c = sqrt(15(5 + c^2))`
`2 – 4c > 0\ \ =>\ \ c<2`
`:. c = -3`
Consider the vector `underset ~a = sqrt 3 underset ~i - underset ~j - sqrt 2 underset ~k`, where `underset ~i, underset ~j` and `underset ~k` are unit vectors in the positive directions of the `x, y` and `z` axes respectively.
Given that `underset ~b` is perpendicular to `underset ~a,` find the value of `m`. (2 marks)
a. | `|underset ~a|` | `= sqrt((sqrt 3)^2 + (-1)^2 + (-sqrt 2)^2)` |
`= sqrt 6` |
`:. hat underset ~a` | `= underset ~a/|underset ~a|` |
`= 1/sqrt 6 (sqrt 3 underset ~i – underset ~j – sqrt 2 underset ~k)` |
b. | `underset ~a ⋅ underset ~i` | `= sqrt 3 xx 1 = sqrt 3` |
`underset ~a ⋅ underset ~i` | `= |underset ~a||underset ~i| cos theta` | |
`= sqrt 6 cos theta` | ||
`sqrt 3` | `= sqrt 6 cos theta` |
`cos theta` | `= 1/sqrt 2` |
`:. theta` | `= pi/4 = 45^@` |
c. `underset ~a ⋅ underset ~b = sqrt 3 (2 sqrt 3) + (-1)(m) + (-sqrt 2)(-5) = 0`
`6 – m + 5 sqrt 2` | `=0` | |
`:. m` | `=6 + 5 sqrt 2` |
Relative to a fixed origin, the points `B`, `C` and `D` are defined respectively by the position vectors `underset~b = underset~i - underset~j + 2underset~k, \ underset~c = 2underset~i - underset~j + underset~k` and `underset~d = aunderset~i - 2underset~j` where `a` is a real constant.
Given that the magnitude of angle `BCD` is `pi/3`, find `a`. (4 marks)
`a = −2`
`text(Angle between)\ overset(->)(CB)\ text(and)\ overset(->)(CD) = pi/3`
`overset(->)(CB)` | `= (1 – 2)underset~i + (−1 – −1)underset~j + (2 – 1)underset~k` |
`= −underset~i + underset~k` |
`overset(->)(CD)` | `= (a – 2)underset~i + (−2 – −1)underset~j + (−1 + 0)underset~k` |
`= (a – 2)underset~i – underset~j – underset~k` |
`overset(->)(CD) · overset(->)(CB)` | `= −(a – 2) + 0 – 1` |
`= 1 – a` | |
`= |overset(->)(CD)||overset(->)(CB)|cos(pi/3)` |
`1 – a` | `= sqrt((a – 2)^2 + (−1)^2 + (−1)^2)sqrt((−1)^2 + (1)^2)cos(pi/3)` |
`1 + a` | `= sqrt(a^2 – 4a + 4 + 1 + 1) xx sqrt2 xx 1/2` |
`2(1 – a)` | `= sqrt(2a^2 – 8a + 12), \ \ a < 1` |
`4(1 – a)^2` | `= 2a^2 – 8a + 12, \ \ a < 1` |
`4(1 – 2a + a^2)` | `= 2a^2 – 8a + 12` |
`4 – 8a + 4a^2` | `= 2a^2 – 8a + 12` |
`2a^2` | `= 8` |
`a^2` | `= 4` |
`:. a` | `= −2\ \ \ (a<1)` |
Let `underset ~a = 2 underset ~i - 2 underset ~j + underset ~k` and `underset ~b = 2 underset ~i + 3 underset ~j + 6 underset ~k`.
The acute angle between `underset ~a` and `underset ~b` is closest to
`C`
`underset ~a ⋅ underset ~b` | `= 4 – 6 + 6 = 4` |
`4` | `=sqrt(4 + 4 + 1) sqrt(4 + 9 + 36) cos theta` |
`4` | `= sqrt 9 xx sqrt 49 cos theta` |
`4` | `= 21 cos theta` |
`theta` | `= cos^(-1) (4/21)` |
`:. theta` | `= 79.0194…` |
`=> C`
Consider the vectors given by `underset ~a = m underset ~i + underset ~j` and `underset ~b = underset ~i + m underset ~j`, where `m in R`.
If the acute angle between `underset ~a` and `underset ~b` is 30°, then `m` equals
`C`
`underset ~a *underset ~b` | `= m + m = 2m` |
`underset ~a *underset ~b` | `= |underset ~a||underset ~b| cos 30^@` |
`= sqrt(m^2 + 1) *sqrt(1 + m^2) *cos 30^@` | |
`= {(m^2 + 1) sqrt 3}/2` |
`{(m^2 + 1) sqrt 3}/2` | `=2m` | |
`m^2 sqrt 3 + sqrt 3` | `=4m` | |
`m^2 sqrt 3 – 4m + sqrt 3` | `=0` | |
`(sqrt 3 m)^2 – 4(sqrt 3 m) + 3` | `=0` | |
`(sqrt 3 m)^2 – 4(sqrt 3 m) + 2^2 – 1` | `=0` | |
`(sqrt 3 m – 2)^2 – 1` | `=0` | |
`sqrt 3 m – 2` | `= +-1` | |
`sqrt 3 m` | `= 2 +- 1` |
`:. m = (2 +- 1)/sqrt 3 = 3/sqrt 3 or 1/sqrt 3`
`= sqrt 3, 1/sqrt 3`
`=> C`