The length of the curve specified by \(x=1-\cos (t)\) and \(y=t-\sin (t)\), where \(t \in[0,2 \pi]\), is given by
- \(\displaystyle \int_0^{2 \pi} 2 \sin \left(\frac{t}{2}\right) d t\)
- \(\displaystyle \int_0^{2 \pi} \sqrt{(1-\cos (t))^2+(t-\sin (t))^2} d t\)
- \(2\displaystyle \int_0^{2 \pi}(1-\cos (t)) d t\)
- \(\displaystyle \int_0^{2 \pi} 2 \cos \left(\frac{t}{2}\right) d t\)