SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, SPEC2 2023 VCAA 1

Viewed from above, a scenic walking track from point \(O\) to point \(D\) is shown below. Its shape is given by

\(f(x)= \begin{cases}-x(x+a)^2, & 0 \leq x \leq 1 \\ e^{x-1}-x+b, & 1<x \leq 2 .\end{cases}\)

The minimum turning point of section \(O A B C\) occurs at point \(A\). Point \(B\) is a point of inflection and the curves meet at point \(C(1,0)\). Distances are measured in kilometres.
 

  1. Show that  \(a=-1\)  and  \(b=0\).  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Verify that the two curves meet smoothly at point \(C\).  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3.  i. Find the coordinates of point \(A\).  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  4. ii. Find the coordinates of point \(B\).  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

The return track from point \(D\) to point \(O\) follows an elliptical path given by

\(x=2 \cos (t)+2, y=(e-2) \sin (t)\), where \(t \in\left[\dfrac{\pi}{2}, \pi\right]\).

  1. Find the Cartesian equation of the elliptical path.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Sketch the elliptical path from \(D\) to \(O\) on the diagram above.  (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

  3.  i. Write down a definite integral in terms of \(t\) that gives the length of the elliptical path from \(D\) to \(O\).  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. ii. Find the length of the elliptical path from \(D\) to \(O\).
  5.     Give your answer in kilometres correct to three decimal places.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\text{At}\ C(1,0): \)

\(\underset{x \to 1^{-}}{\lim} f_1(x) = \underset{x \to 1^{-}}{\lim}-x(x+a)^2 = -1(1+a)^2 = 0 \)

    \(a=-1\)

\(\underset{x \to 1^{+}}{\lim} f_2(x)\ \underset{x \to 1^{+}}{\lim} (e^{x-1}-x+b) = e^0-1+b=b = 0 \)
 

b.    \(\text{Find derivative functions (by calc)}:\)

\(\dfrac{d}{dx} \big{(}-x(x-1)^2\big{)} = -(x-1)(3x-1)\ \ \Rightarrow \ \ \text{At}\ \ x=1, f_1^{′}(x)=0 \)

\(\dfrac{d}{dx} (e^{x-1}-x+b) = e^{x-1}-1\ \ \Rightarrow \ \ \text{At}\ \ x=1, f_2^{′}(x)=0 \)

\(\Rightarrow\ \text{Since gradients are equal, curves meet smoothly.}\)
 

c.i.  \(A\Big{(} \frac{1}{3}, -\frac{4}{27} \Big{)} \)
 

c.ii.  \(B\Big{(} \frac{2}{3}, -\frac{2}{27} \Big{)} \)
 

d.   \(\Big{(}\dfrac{x-2}{2}\Big{)}^2 + \Big{(}\dfrac{y}{e-2}\Big{)}^2=1\)
 

e.    
          
 

f.i.    \(\displaystyle{\int_{\frac{\pi}{2}}^{\pi}} \sqrt{4\,\sin^2(t)+(e-2)^2\cos^2(t)}\,dt\)
 

f.ii.  \(\text{Length}\ = 2.255\)

Show Worked Solution

a.    \(\text{At}\ C(1,0): \)

\(\underset{x \to 1^{-}}{\lim} f_1(x) = \underset{x \to 1^{-}}{\lim}-x(x+a)^2 = -1(1+a)^2 = 0 \)

    \(a=-1\)

\(\underset{x \to 1^{+}}{\lim} f_2(x)\ \underset{x \to 1^{+}}{\lim} (e^{x-1}-x+b) = e^0-1+b=b = 0 \)
 

b.    \(\text{Find derivative functions (by calc)}:\)

\(\dfrac{d}{dx} \big{(}-x(x-1)^2\big{)} = -(x-1)(3x-1)\ \ \Rightarrow \ \ \text{At}\ \ x=1, f_1^{′}(x)=0 \)

\(\dfrac{d}{dx} (e^{x-1}-x+b) = e^{x-1}-1\ \ \Rightarrow \ \ \text{At}\ \ x=1, f_2^{′}(x)=0 \)

\(\Rightarrow\ \text{Since gradients are equal, curves meet smoothly.}\)
 

c.i.  \(\dfrac{d}{dx} \big{(}-x(x-1)^2\big{)} = -(x-1)(3x-1)\ \Rightarrow \ \text{SP when}\ x=\dfrac{1}{3} \)

\(A\Big{(} \frac{1}{3}, -\frac{4}{27} \Big{)} \)
 

c.ii.  \(\text{POI at}\ B: \ f_1^{″}(x)=-6x+4=0\ \ \Rightarrow x=\dfrac{2}{3} \)

\(B\Big{(} \frac{2}{3}, -\frac{2}{27} \Big{)} \)
 

d.   \(\dfrac{x-2}{2}=\cos(t), \ \ \dfrac{y}{e-2}=\sin(t) \)

\(\Big{(}\dfrac{x-2}{2}\Big{)}^2 + \Big{(}\dfrac{y}{e-2}\Big{)}^2=1\)
 

e.    
          
 

f.i.    \(\dfrac{dx}{dt} = -2\sin(t),\ \ \dfrac{dy}{dt} = (e-2)\cos(t) \)

\(\displaystyle{\int_{\frac{\pi}{2}}^{\pi}} \sqrt{4\,\sin^2(t)+(e-2)^2\cos^2(t)}\,dt\)
 

f.ii.   \(\text{Evaluate the integral in part f.i.}\)

\(\Rightarrow \text{Length}\ = 2.255\)

Filed Under: Arc Lengths, Areas and Other, Tangents and Curve Sketching Tagged With: Band 3, Band 4, smc-1181-10-Arc length, smc-1181-40-Parametric functions, smc-1182-10-Find gradient, smc-1182-40-Other 1st/2nd deriv problems

Calculus, SPEC1 2020 VCAA 9

Consider the curve defined parametrically by

`x = arcsin (t)`

`y = log_e(1 + t) + 1/4 log_e (1-t)`

where `t in [0, 1)`.

  1. `((dy)/(dt))^2` can be written in the form  `1/(a(1 + t)^2) + 1/(b(1-t^2)) + 1/(c(1-t)^2)` where  `a, b`  and  `c`  are real numbers.
  2. Show that  `a = 1, b = – 2`  and  `c = 16`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the arc length, `s`, of the curve from  `t = 0`  to  `t = 1/2`. Give your answer in the form  `s = log_e(m) + n log_e (p)`, where  `m, n, p in Q`.  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

  1. `text(Proof)\ text{(See Worked Solutions)}`
  2. `log_e(3/2)-1/4 log_e(1/2)`

Show Worked Solution

a.   `y` `= log_e(1 + t) + 1/4 log_e (1-t)`
  `(dy)/(dt)` `= 1/(1 + t)-1/(4(1-t))`
  `((dy)/(dt))^2` `= 1/(1 + t)^2-2 ⋅ 1/(1 + t) ⋅ 1/(4(1-t)) + 1/(16(1-t)^2)`
    `= 1/(1 + t)^2-1/(2(1-t^2)) + 1/(16(1-t)^2)`

 
`:. a = 1, b = – 2, c = 16`

♦♦ Mean mark part (b) 31%.

 

b.   `s` `= int_0^(1/2) sqrt(((dx)/(dt))^2 + ((dy)/(dt))^2)\ dt`
    `= int_0^(1/2) sqrt(1/(1-t^2) + 1/(1 + t^2)-1/(2(1-t^2)) + 1/(16(1-t)^2))\ dt`
    `= int_0^(1/2) sqrt(1/(1 + t^2) + 1/(2(1-t^2)) + 1/(16(1-t)^2))\ dt`
    `= int_0^(1/2) sqrt((1/(1 + t) + 1/(4(1-t)))^2)\ dt`
    `= int_0^(1/2) 1/(1 + t) + 1/(4(1-t))\ dt`
    `= [log_e(1 + t)-1/4 log_e(1-t)]_0^(1/2)`
    `= log_e(3/2)-1/4 log_e(1/2)`

Filed Under: Arc Lengths, Areas and Other Tagged With: Band 4, Band 5, smc-1181-10-Arc length, smc-1181-40-Parametric functions

Calculus, SPEC2 2019 VCAA 7 MC

The length of the curve defined by the parametric equations  `x = 3sin(t)`  and  `y = 4cos(t)`  for  `0 <= t <= pi`  is given by

  1. `int_0^pi sqrt(9cos^2(t) - 16sin^2(t))\ dt`
  2. `int_0^pi sqrt(9 + 7sin^2(t))\ dt`
  3. `int_0^pi sqrt(1 + 16sin^2(t))\ dt`
  4. `int_0^pi (3cos(t) - 4sin(t))\ dt`
  5. `int_0^pi sqrt(3cos^2(t) + 4sin^2(t))\ dt`
Show Answers Only

`B`

Show Worked Solution

`x = 3sin(t) \ => \ (dx)/(dt) = 3cos(t)`

`y = 4cos(t) \ => \ (dy)/(dt) = −4sin(t)`

`text(Length)` `= int_0^pi sqrt((3cos(t))^2 + (−4sin(t))^2)\ dt`
  `= int_0^pi sqrt(9cos^2(t) + 16sin^2(t))\ dt`
  `= int_0^pi sqrt(9cos^2(t) + 9sin^2(t) + 7sin^2(t))\ dt`
  `= int_0^pi sqrt(9 + 7sin^2(t))\ dt`

 
`=>B`

Filed Under: Arc Lengths, Areas and Other Tagged With: Band 4, smc-1181-10-Arc length, smc-1181-40-Parametric functions

Calculus, SPEC1-NHT 2017 VCAA 11

Find the length of the curve specified parametrically by  `x = a theta - a sin (theta), \ y = a - a cos (theta)`  from  `theta = (2 pi)/3`  to  `theta = 2 pi`, where  `a in R^+`. Give your answer in terms of `a`.  (4 marks)

Show Answers Only

`6a`

Show Worked Solution
`(dx)/(d theta)` `= a – a cos (theta)`
`(dy)/(d theta)` `= a sin (theta)`
   
`((dx)/(d theta))^2` `= (a(1 – cos (theta)))^2`
  `= a^2(1 – 2 cos (theta) + cos^2 theta)`
`((dy)/(d theta))^2` `= a^2 sin^2 (theta)`

 

`l` `= int_((2 pi)/3)^(2pi) sqrt(a^2 sin^2(theta) + a^2 – 2a^2 cos (theta) + a^2 cos^2(theta))\ d theta`
  `= int_((2 pi)/3)^(2pi) sqrt(a^2(sin^2(theta) + cos^2(theta) + 1 – 2 cos(theta)))\ d theta`
  `= int_((2 pi)/3)^(2pi) a sqrt(1 + 1 – 2 cos (theta))\ d theta, \ \ a > 0`
  `= a int_((2 pi)/3)^(2pi) underbrace{sqrt(2 – 2cos (theta))}_{cos (theta) = 2 cos^2(theta/2) – 1}\ d theta`
  `= a int_((2 pi)/3)^(2pi) sqrt(2 – 4 cos^2 (theta/2) + 2)\ d theta`
  `= a int_((2 pi)/3)^(2pi) sqrt(4 – 4 cos^2(theta/2))\ d theta`
  `= a int_((2 pi)/3)^(2pi) sqrt(4 sin^2 (theta/2))\ d theta`
  `= a int_((2 pi)/3)^(2pi) 2 sin (theta/2)\ d theta`
  `(theta in [(2 pi)/3, 2 pi]\ \ =>\ \  theta/2 in [pi/3, pi]\ \ =>\ \ sin(theta/2) > 0)`
  `= a [-4 cos (theta/2)]_((2 pi)/3)^(2pi)`
  `= a(-4 cos (pi) – (-4)cos (pi/3))`
  `= a(-4 xx (-1) + 4 xx 1/2)`
  `= 6a`

Filed Under: Arc Lengths, Areas and Other Tagged With: Band 5, smc-1181-10-Arc length, smc-1181-40-Parametric functions

Calculus, SPEC2 2018 VCAA 7 MC

A curve is described parametrically by  `x = sin(2t), y = 2 cos (t)`  for  `0 <= t <= 2pi`.

The length of the curve is closest to

A.    9.2

B.    9.5

C.  12.2

D.  12.5

E.  38.3 

Show Answers Only

`C`

Show Worked Solution

`x prime (t) = 2 cos (2t)`

`y prime (t) = -2 sin(t)`

`ℓ` `= int_0^(2 pi) sqrt{(2 cos(2t))^2 + (-2 sin (t))^2 dt}`
  `~~ 12.2`

 
`=>  C`

Filed Under: Arc Lengths, Areas and Other Tagged With: Band 3, smc-1181-10-Arc length, smc-1181-40-Parametric functions

Copyright © 2014–2025 SmarterEd.com.au · Log in