SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, SPEC1 2019 VCAA 5

The graph of  `f(x) = cos^2(x) + cos(x) + 1`  over the domain  `0 <= x <= 2pi`  is shown below.

  1.  i.  Find `f^{′}(x)`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. ii. Hence, find the coordinates of the turning points of the graph in the interval  `(0, 2pi)`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Sketch the graph of  `y = 1/(f(x))`  on the set of axes above. Clearly label the turning points and endpoints of this graph with their coordinates.  (3 marks)
Show Answers Only
  1. i.  `−sin(x)(2cos(x) + 1)`
  2. ii. `(pi, 1), ((2pi)/3,3/4), ((4pi)/3, 3/4)`
  3.  

Show Worked Solution
a.i.    `f(x)` `= cos^2(x) + cos(x) + 1`
  `f^{′}(x)` `= -2sin(x)cos(x)-sin(x)`
    `= -sin(x)(2cos(x) + 1)`

 

a.ii.   `text(SP when)\ \ sin(x) = 0\ \ text(or)\ \ 2cos(x) + 1 = 0`

`sin(x) = 0 \ => \ x = pi\ \ (x = 0\ \ text{not in domain})`

`2cos(x) + 1` `= 0`
`cos(x)` `= -1/2`
`x` `= (2pi)/3, (4pi)/3`

 
`text(When)\ \ cos(x) = −1/2 \ => \ f(x) = 1/4-1/2 + 1 = 3/4`

`:.\ text(Turning Points:)\ (pi, 1), ((2pi)/3,3/4), ((4pi)/3, 3/4)`

 

b.   

Filed Under: Tangents and Curve Sketching Tagged With: Band 2, Band 3, Band 4, smc-1182-35-Sketch curve, smc-1182-70-y = 1/f(x)

Copyright © 2014–2025 SmarterEd.com.au · Log in