SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, SPEC2 2024 VCAA 8 MC

Consider the differential equation  \(\dfrac{dy}{dx}=x y^2\)  where  \(y_0=y(0)=1\).

When Euler's method is applied using a step size of \(h\), where  \(h>0, \ y_3=1.126528\)

The value of \(h\) is

  1. \(0.01\)
  2. \(0.02\)
  3. \(0.20\)
  4. \(0.36\)
Show Answers Only

\(C\)

Show Worked Solution
\(x_{n+1}\) \(=x_{n}+h\) \(y_{n+1}\) \(=y_n+hx_ny_{n}^2\)
\(x_{0}\) \(=0,\) \(y_0\) \(=1\)
\(x_{1}\) \(=h,\) \(y_1\) \(=1+h\cdot 0 \cdot 1^2=1 \)
\(x_{2}\) \(=2h,\) \(y_2\) \(=1+h\cdot h \cdot 1^2=1+h^2 \)
\(x_{3}\) \(=3h,\) \(y_3\) \(=1+h^2+h \cdot 2h \cdot (1+h^2)^2 \)
      \(=1+h^2+2h^2(1+2h^2+h^4)\)
      \(=1+3h^2+4h^4+2h^6\)

 
\(\text{Solve:}\ \ 1+3h^2+4h^4+2h^6=1.126528\ \ \text{for}\ \ h>0\)

\(h=0.2 \ \text{(by CAS)}\)

\(\Rightarrow C\)

Filed Under: Euler, Pseudocode and Slope Fields Tagged With: Band 4, smc-1183-10-Euler method

Calculus, SPEC2 2022 VCAA 9 MC

Euler's method is used to find an approximate solution to the differential equation  `\frac{d y}{d x}=2 x^2`.

Given that  `x_0=1, y_0=2`  and  `y_2=2.976`, the value of the step size `h` is

  1. 0.1
  2. 0.2
  3. 0.3
  4. 0.4
  5. 0.5
Show Answers Only

`B`

Show Worked Solution

`y_{n+1}=y_{n}+y_{n}^{\prime}*h`

`y_1=y_0+y_0^{′}*h = 2+2 xx 1^2 * h=2+2h`

`y_2=y_1+y_1^{′}*h = (2+2h)+2 xx (1+h)^2*h = 2h(1+h)^2+2(1+h)`

`text{Solve:}\ 2h(1+h)^2+2(1+h)=2.976,\ \text{for}\ h:`

`h=0.2`

`=>B`

Filed Under: Euler, Pseudocode and Slope Fields Tagged With: Band 4, smc-1183-10-Euler method

Calculus, SPEC2 2021 VCAA 8 MC

Euler's method, with a step size of 0.1, is used to approximate the solution of the differential equation  `(dy)/(dx) = ysin(x)`.

Given that  `y = 2`  when  `x = 1`, the value of `y`, correct to three decimal places, when  `x = 1.2` is

  1. 2.168
  2. 2.178
  3. 2.362
  4. 2.370
  5. 2.381
Show Answers Only

`C`

Show Worked Solution

`text(Using)\ \ y_0 = 2, \ x_0 = 1, \ h = 0.1:`

`y_1` `= y_0 + h(y_0sinx_0)`
  `= 2 + 0.1(2sin1)`
  `= 2.1683`

 

`y_2` `= 2.1683 + 0.1(2.1683 xx sin 1.1)`
  `= 2.362`

 
`=>\ C`

Filed Under: Euler, Pseudocode and Slope Fields Tagged With: Band 4, smc-1183-10-Euler method

Calculus, SPEC2 2020 VCAA 12 MC

If  `(dy)/(dx) = e^(cos(x))`  and  `y_0 = e`  when  `x_0 = 0`, then, using Euler's formula with step size 0.1, `y_3` is equal to

  1. `e + 0.1(1 + e^(cos(0.1)))`
  2. `e + 0.1(1 + e^(cos(0.1)) + e^(cos(0.2)))`
  3. `e + 0.1(e + e^(cos(0.1)) + e^(cos(0.2)))`
  4. `e + 0.1(e^(cos(0.1)) + e^(cos(0.2)) + e^(cos(0.3)))`
  5. `e + 0.1(e + e^(cos(0.1)) + e^(cos(0.2)) + e^(cos(0.3)))`
Show Answers Only

`C`

Show Worked Solution

`text(When)\ \ y_0 = e, x_0 = 0`

`y_1 = e + 0.1 e^(cos(0)) = e + 0.1e`

`y_2` `= e + 0.1e + 0.1e^(cos(0.1))`
  `= e + 0.1(e + e^(cos(0.1)))`
`y_3` `= e + 0.1(e + e^(cos(0.1))) + 0.1e^(cos(0.2))`
  `= e + 0.1(e + e^(cos(0.1)) + e^(cos(0.2)))`

 
`=>C`

Filed Under: Euler, Pseudocode and Slope Fields Tagged With: Band 4, smc-1183-10-Euler method

Calculus, SPEC2-NHT 2019 VCAA 10 MC

Euler's method, with a step size of 0.1, is used to approximate the solution of the differential equation  `1/y(dy)/(dx) = cos(x)`, with  `y = 2`  when  `x = 0`.

When  `x = 0.2`, the value obtained for `y`, correct to four decimal places, is

  1.  2.2000
  2.  2.3089
  3.  2.3098
  4.  2.4189
  5.  2.4199
Show Answers Only

`D`

Show Worked Solution
`1/y · (dy)/(dx)` `= cosx`
`(dy)/(dx)` `= ycosx`

 
`text(Using)\ \ y_0 = 2, x_0 = 0, h = 0.1:`

`y_1` `= y_0 + h(y_0cosx_0)`
  `= 2 + 0.1(2cos0)`
  `= 2.2`
`y_2` `= 2.2 + 0.1(2.2cos(0.1))`
  `= 2.4189`

 
`=>\ D`

Filed Under: Euler, Pseudocode and Slope Fields Tagged With: Band 4, smc-1183-10-Euler method

Calculus, SPEC2 2012 VCAA 9 MC

Euler's formula is used to find  `y_2`, where  `(dy)/(dx) = cos(x),\ x_0 = 0, \ y_0 = 1`  and  `h = 0.1`.

The value of `y_2` correct to four decimal places is

A.   1.1000 and this is an underestimate of  `y(0.2)`

B.   1.1995 and this is an overestimate of  `y(0.2)`

C.   1.1995 and this is an underestimate of  `y(0.2)`

D.   1.2975 and this is an underestimate of  `y(0.2)`

E.   1.2975 and this is an overestimate of  `y(0.2)`

Show Answers Only

`B`

Show Worked Solution

`x_0 = 0,\ \ y_0 = 1,\ \ h=0.1`

`y_1` `= y_0 + h* (dy)/(dx)|_{(0,1)}`
  `= 1 + 0.1 xx cos(0)`
  `= 1.1`
   
`y_2` `= 1.1 + 0.1 xx cos(0.1)`
  `~~ 1.1995`

 
`text(S)text(ince)\ \ sin(x)\ \ text(is concave down in the region)\ \ x=0.2,`

`1.1995\ text(is an overestimate.)`

`=> B`

Filed Under: Euler, Pseudocode and Slope Fields Tagged With: Band 4, smc-1183-10-Euler method

Calculus, SPEC2 2011 VCAA 18 MC

The amount of chemical `x` in a tank at time  `t`  is given by the differential equation  `dx/dt = -10/(10 - t)`  and when  `t = 0`, `\ x_0 = 5`. Euler's method is used with a step size of 0.5 in the values of  `t`.

The value of `x` correct to two decimal places when  `t = 1`  is found to be

A.   3.95

B.   3.97

C.   4.50

D.   5.50

E.   6.03

Show Answers Only

`B`

Show Worked Solution
`x_1 ~~ x(0.5)` `= 5 + 0.5 xx (−10/(10 – 0))`
  `= 5 – 0.5`
  `= 4.5`

 

Mean mark 51%.

`x_2 ~~ x(1)` `= 4.5 + 0.5 xx (−10/(10 – 0.5))`
  `= 4.5 – 10/19`
  `~~ 3.97`

`=> B`

Filed Under: Euler, Pseudocode and Slope Fields Tagged With: Band 4, smc-1183-10-Euler method

Calculus, SPEC2 2013 VCAA 11 MC

Consider the differential equation  `(dy)/(dx) = 1/(3 + 3x + x^2)`, with  `y_0 = 1`  when  `x_0 = 0`.

Using Euler's method with a step size of 0.1, the value of  `y_2` correct to three decimal places, is

A.   1.033

B.   1.063

C.   1.064

D.   1.065

E.   1.066

Show Answers Only

`C`

Show Worked Solution
`y_1` `= y_0 + h xx (dy)/(dx)|_{(x_0,y_0)}`
  `= 1 + 0.1 xx 1/(3 + 3 xx 0 + 0)`
  `= 1.03`

 

`y_2` `= y_1 + h xx (dy)/(dx)|_{(x_1,y_1)}`
  `= 1.03 + 0.1(1/(3 + 0.3 + 0.01))`
  `~~ 1.064`

 
`=> C`

Filed Under: Euler, Pseudocode and Slope Fields Tagged With: Band 4, smc-1183-10-Euler method

Calculus, SPEC2 2016 VCAA 9 MC

If  `f(x) = (dy)/(dx) = 2x^2 - x`, where  `y_0 = 0 = y(2)`, then  `y_3`  using Euler’s formula with step size 0.1 is

A.  `0.1\ f(2)`

B.  `0.6 + 0.1\ f(2.1)`

C.  `1.272 + 0.1\ f(2.2)`

D.  `2.02 + 0.1\ f(2.3)`

E.  `2.02 + 0.1\ f(2.2)` 

Show Answers Only

`C`

Show Worked Solution
`y_1` `= y_0 + 0.1(2(2)^2 – 2)`
  `= 0.6`
`y_2` `= 0.6 + 0.1 (2(2.1)^2 – 2.1)`
  `= 1.272`
`:.  y_3` `= 1.272 + 0.1\ f(2.2)`

 
`=>  C`

Filed Under: Euler, Pseudocode and Slope Fields Tagged With: Band 4, smc-1183-10-Euler method

Calculus, SPEC2-NHT 2017 VCAA 3

Bacteria are spreading over a Petri dish at a rate modelled by the differential equation

`(dP)/(dt) = P/2 (1-P),\ 0 < P < 1`

where  `P`  is the proportion of the dish covered after  `t`  hours.

    1. Express  `2/(P(1-P))`  in partial fraction form.   (1 mark)

      --- 4 WORK AREA LINES (style=lined) ---

    2. Hence show by integration that  `(t-c)/2= log_e(P/(1-P))`, where  `c`  is a constant of integration.   (2 marks)

      --- 5 WORK AREA LINES (style=lined) ---

    3. If half of the Petri dish is covered by the bacteria at  `t = 0`, express  `P`  in terms of  `t`.   (2 marks)

      --- 5 WORK AREA LINES (style=lined) ---

After one hour, a toxin is added to the Petri dish, which harms the bacteria and reduces their rate of growth. The differential equation that models the rate of growth is now

`(dP)/(dt) = P/2 (1-P)-sqrt P/20`  for  `t >= 1`

  1. Find the limiting value of  `P`, which is the maximum possible proportion of the Petri dish that can now be covered by the bacteria. Give your answer correct to three decimal places.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. The total time, `T`  hours, measured from time  `t = 0`, needed for the bacteria to cover 80% of the Petri dish is given by
     

     

    `qquad qquad T = int_q^r (1/(P/2(1-P)-sqrt P/20)) dP + s`
     

     

    where  `q, r and s in R`.

     

     

    Find the values of  `q, r` and `s`, giving the value of `q` correct to two decimal places.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  1. Given that  `P = 0.75`  when  `t = 3`, use Euler’s method with a step size of 0.5 to estimate the value of `P` when  `t = 3.5`. Give your answer correct to three decimal places.   (3 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
    1. `2/(P(1-P)) = 2/P + 2/(1-P)`
    2. `text(Proof)\ text{(See Worked Solutions)}`
    3. `P = e^(t/2)/(1 + e^(t/2))`
  1. `P ~~ 0.894`
  2. `r = 0.8`
    `s = 1`
    `q ~~ 0.62`
  3. `~~ 0.775`
Show Worked Solution

a.i.   `2/(P(1-P)) = A/P + B/(1 ⋅ P)`

`A(1-P) + BP = 2`

`text(If)\ \ P = 0\ \ =>\ \ A = 2`

`text(If)\ \ P = 1\ \ =>\ \ B = 2`

`:. 2/(P(1-P)) = 2/P + 2/(1-P)\ \ \ text{(can also solve by CAS)}`

 

a.ii.  `(dt)/(dP) = 2/(P(1-P)) = 2/P + 2/(1-P)`

`t` `= int 2/P + 2/(1-P)\ dP`
  `= 2 ln |P|-2ln|1-P| + c`
`(t-c)/2` `=ln|P|-ln|1-P|`
  `=ln |(P)/(1-P)|`
  `= ln (P/(1-P))`

  
`text(S)text(ince)\ \ 0 < P < 1 :\ |P| = P\ and\ |1-P| = 1-P`


a.iii.
  `text(When)\ \ t=0,\ P=0.5`

`(-c)/2` `= ln (0.5/0.5)`
`c` `= ln (1) = 0`

 

`t/2` `= ln (P/(1-P))\ \ \ text{(solve manually or by CAS)}`
`e^(t/2)` `= P/(1-P)`
`e^(t/2) (1-P)` `= P`
`e^(t/2)-Pe^(t/2)` `= P`
`e^(t/2)` `= P(1 + e^(t/2))`
`:. P` `= e^(t/2)/(1 + e^(t/2))`

 

b.   `(dP)/(dt) = P/2 (1-P)-sqrt P/20`

`text(Limiting value occurs when)\ \ (dP)/(dt) = 0,`

`P ~~ 0.894\ \ \ text{(by CAS)}`
 

`=>\ text(Lower solution values at levels already exceeded)`

 `text(are ignored.)`

 

c.   `(dt)/(dP) = 1/(P/2 (1-P)-sqrt P/20)\ \ text(for)\ \ t>=1`

`text(When)\ \ t=1\ \ =>\ \ P=0.622`
 

`T = int_0.62^0.8 1/(P/2 (1-P)-sqrt P/20) dP + 1`
 

`:. r = 0.8,\ s = 1 and q = 0.62`

 

d.   `P(3.5) ~~ P(3) + h* (dP)/(dt)|_(P= 0.75)`

   `= 0.75 + 0.5 (0.75/2 (1-0.75)-sqrt 0.75/20)`

   `~~ 0.775`
 

`:. P~~0.775\ \ text(when)\ \ t=3.5`

Filed Under: Applied Contexts, Euler, Pseudocode and Slope Fields Tagged With: Band 3, Band 4, Band 5, smc-1183-10-Euler method, smc-1184-60-Growth and decay

Calculus, SPEC2 2017 VCAA 9 MC

Consider  `(dy)/(dx) = 2x^2 + x + 1`, where  `y(1) = y_0 = 2`.

Using Euler's method with a step size of 0.1, an approximation to  `y(0.8) = y_2`  is given by

  1.  `0.94`
  2.  `1.248`
  3.  `1.6`
  4.  `2.4`
  5.  `2.852`
Show Answers Only

`B`

Show Worked Solution
`y(0.9)~~y_1` `= y_0 + h * (dy)/(dx)|_{(x_0,y_0)}`
  `= 2 – 0.1 xx (2 xx 1^2 + 1 + 1)`
  `= 2 – 0.1(4)`
  `= 2 – 0.4`
  `= 1.6`

♦ Mean mark 45%.

`y(0.8)~~y_2` `= y_1 + h*(dy)/(dx)|_{(x_1,y_1)}`
  `= 1.6 – 0.1(2(0.9)^2 + 0.9 + 1)`
  `= 1.248`

 
`=>B`

Filed Under: Euler, Pseudocode and Slope Fields Tagged With: Band 5, smc-1183-10-Euler method

Calculus, SPEC2 2014 VCAA 11 MC

Let  `(dy)/(dx) = x^3 - xy`  and  `y = 2`  when  `x = 1`.

Using Euler’s method with a step size of 0.1, the approximation to  `y`  when  `x = 1.1`  is

A.   0.9

B.   1.0

C.   1.1

D.   1.9

E.   2.1

Show Answers Only

`D`

Show Worked Solution

`text(When)\ \ x=1,\ \ y=2.`

`text(Using Euler when)\ \ x=1.1`

`y(1.1)` `~~ 2 + 0.1 xx (1^3 – 1 xx 2)`
  `= 1.9`

 
`=> D`

Filed Under: Euler, Pseudocode and Slope Fields Tagged With: Band 3, smc-1183-10-Euler method

Copyright © 2014–2025 SmarterEd.com.au · Log in