Euler's method is used to find an approximate solution to the differential equation `\frac{d y}{d x}=2 x^2`.
Given that `x_0=1, y_0=2` and `y_2=2.976`, the value of the step size `h` is
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
Aussie Maths & Science Teachers: Save your time with SmarterEd
Euler's method is used to find an approximate solution to the differential equation `\frac{d y}{d x}=2 x^2`.
Given that `x_0=1, y_0=2` and `y_2=2.976`, the value of the step size `h` is
`B`
`y_{n+1}=y_{n}+y_{n}^{\prime}*h`
`y_1=y_0+y_0^{′}*h = 2+2 xx 1^2 * h=2+2h`
`y_2=y_1+y_1^{′}*h = (2+2h)+2 xx (1+h)^2*h = 2h(1+h)^2+2(1+h)`
`text{Solve:}\ 2h(1+h)^2+2(1+h)=2.976,\ \text{for}\ h:`
`h=0.2`
`=>B`
Euler's method, with a step size of 0.1, is used to approximate the solution of the differential equation `(dy)/(dx) = ysin(x)`.
Given that `y = 2` when `x = 1`, the value of `y`, correct to three decimal places, when `x = 1.2` is
`C`
`text(Using)\ \ y_0 = 2, \ x_0 = 1, \ h = 0.1:`
`y_1` | `= y_0 + h(y_0sinx_0)` |
`= 2 + 0.1(2sin1)` | |
`= 2.1683` |
`y_2` | `= 2.1683 + 0.1(2.1683 xx sin 1.1)` |
`= 2.362` |
`=>\ C`
If `(dy)/(dx) = e^(cos(x))` and `y_0 = e` when `x_0 = 0`, then, using Euler's formula with step size 0.1, `y_3` is equal to
`C`
`text(When)\ \ y_0 = e, x_0 = 0`
`y_1 = e + 0.1 e^(cos(0)) = e + 0.1e`
`y_2` | `= e + 0.1e + 0.1e^(cos(0.1))` |
`= e + 0.1(e + e^(cos(0.1)))` |
`y_3` | `= e + 0.1(e + e^(cos(0.1))) + 0.1e^(cos(0.2))` |
`= e + 0.1(e + e^(cos(0.1)) + e^(cos(0.2)))` |
`=>C`
Euler's method, with a step size of 0.1, is used to approximate the solution of the differential equation `1/y(dy)/(dx) = cos(x)`, with `y = 2` when `x = 0`.
When `x = 0.2`, the value obtained for `y`, correct to four decimal places, is
`D`
`1/y · (dy)/(dx)` | `= cosx` |
`(dy)/(dx)` | `= ycosx` |
`text(Using)\ \ y_0 = 2, x_0 = 0, h = 0.1:`
`y_1` | `= y_0 + h(y_0cosx_0)` |
`= 2 + 0.1(2cos0)` | |
`= 2.2` |
`y_2` | `= 2.2 + 0.1(2.2cos(0.1))` |
`= 2.4189` |
`=>\ D`
Euler's formula is used to find `y_2`, where `(dy)/(dx) = cos(x),\ x_0 = 0, \ y_0 = 1` and `h = 0.1`.
The value of `y_2` correct to four decimal places is
A. 1.1000 and this is an underestimate of `y(0.2)`
B. 1.1995 and this is an overestimate of `y(0.2)`
C. 1.1995 and this is an underestimate of `y(0.2)`
D. 1.2975 and this is an underestimate of `y(0.2)`
E. 1.2975 and this is an overestimate of `y(0.2)`
`B`
`x_0 = 0,\ \ y_0 = 1,\ \ h=0.1`
`y_1` | `= y_0 + h* (dy)/(dx)|_{(0,1)}` |
`= 1 + 0.1 xx cos(0)` | |
`= 1.1` | |
`y_2` | `= 1.1 + 0.1 xx cos(0.1)` |
`~~ 1.1995` |
`text(S)text(ince)\ \ sin(x)\ \ text(is concave down in the region)\ \ x=0.2,`
`1.1995\ text(is an overestimate.)`
`=> B`
The amount of chemical `x` in a tank at time `t` is given by the differential equation `dx/dt = -10/(10 - t)` and when `t = 0`, `\ x_0 = 5`. Euler's method is used with a step size of 0.5 in the values of `t`.
The value of `x` correct to two decimal places when `t = 1` is found to be
A. 3.95
B. 3.97
C. 4.50
D. 5.50
E. 6.03
`B`
`x_1 ~~ x(0.5)` | `= 5 + 0.5 xx (−10/(10 – 0))` |
`= 5 – 0.5` | |
`= 4.5` |
`x_2 ~~ x(1)` | `= 4.5 + 0.5 xx (−10/(10 – 0.5))` |
`= 4.5 – 10/19` | |
`~~ 3.97` |
`=> B`
Consider the differential equation `(dy)/(dx) = 1/(3 + 3x + x^2)`, with `y_0 = 1` when `x_0 = 0`.
Using Euler's method with a step size of 0.1, the value of `y_2` correct to three decimal places, is
A. 1.033
B. 1.063
C. 1.064
D. 1.065
E. 1.066
`C`
`y_1` | `= y_0 + h xx (dy)/(dx)|_{(x_0,y_0)}` |
`= 1 + 0.1 xx 1/(3 + 3 xx 0 + 0)` | |
`= 1.03` |
`y_2` | `= y_1 + h xx (dy)/(dx)|_{(x_1,y_1)}` |
`= 1.03 + 0.1(1/(3 + 0.3 + 0.01))` | |
`~~ 1.064` |
`=> C`
If `f(x) = (dy)/(dx) = 2x^2 - x`, where `y_0 = 0 = y(2)`, then `y_3` using Euler’s formula with step size 0.1 is
A. `0.1\ f(2)`
B. `0.6 + 0.1\ f(2.1)`
C. `1.272 + 0.1\ f(2.2)`
D. `2.02 + 0.1\ f(2.3)`
E. `2.02 + 0.1\ f(2.2)`
`C`
`y_1` | `= y_0 + 0.1(2(2)^2 – 2)` |
`= 0.6` | |
`y_2` | `= 0.6 + 0.1 (2(2.1)^2 – 2.1)` |
`= 1.272` | |
`:. y_3` | `= 1.272 + 0.1\ f(2.2)` |
`=> C`
Bacteria are spreading over a Petri dish at a rate modelled by the differential equation
`(dP)/(dt) = P/2 (1 - P),\ 0 < P < 1`
where `P` is the proportion of the dish covered after `t` hours.
After one hour, a toxin is added to the Petri dish, which harms the bacteria and reduces their rate of growth. The differential equation that models the rate of growth is now
`(dP)/(dt) = P/2 (1 - P) - sqrt P/20` for `t >= 1`
`qquad qquad T = int_q^r (1/(P/2(1 - P) - sqrt P/20)) dP + s`
where `q, r and s in R`.
Find the values of `q, r` and `s`, giving the value of `q` correct to two decimal places. (2 marks)
a.i. `2/(P(1 – P)) = A/P + B/(1 ⋅ P)`
`A(1 – P) + BP = 2`
`text(If)\ \ P = 0\ \ =>\ \ A = 2`
`text(If)\ \ P = 1\ \ =>\ \ B = 2`
`:. 2/(P(1 – P)) = 2/P + 2/(1 – P)\ \ \ text{(can also solve by CAS)}`
a.ii. `(dt)/(dP) = 2/(P(1 – P)) = 2/P + 2/(1 – P)`
`t` | `= int 2/P + 2/(1 – P)\ dP` |
`= 2 ln |P| – 2ln|1 – P| + c` | |
`(t-c)/2` | `=ln|P| – ln|1-P|` |
`=ln |(P)/(1-P)|` | |
`= ln (P/(1 – P))` |
`text(S)text(ince)\ \ 0 < P < 1 :\ |P| = P\ and\ |1 – P| = 1 – P`
a.iii. `text(When)\ \ t=0,\ P=0.5`
`(-c)/2` | `= ln (0.5/0.5)` |
`c` | `= ln (1) = 0` |
`t/2` | `= ln (P/(1 – P))\ \ \ text{(solve manually or by CAS)}` |
`e^(t/2)` | `= P/(1 – P)` |
`e^(t/2) (1 – P)` | `= P` |
`e^(t/2) – Pe^(t/2)` | `= P` |
`e^(t/2)` | `= P(1 + e^(t/2))` |
`:. P` | `= e^(t/2)/(1 + e^(t/2))` |
b. `(dP)/(dt) = P/2 (1 – P) – sqrt P/20`
`text(Limiting value occurs when)\ \ (dP)/(dt) = 0,`
`P ~~ 0.894\ \ \ text{(by CAS)}`
`=>\ text(Lower solution values at levels already exceeded)`
`text(are ignored.)`
c. `(dt)/(dP) = 1/(P/2 (1 – P) – sqrt P/20)\ \ text(for)\ \ t>=1`
`text(When)\ \ t=1\ \ =>\ \ P=0.622`
`T = int_0.62^0.8 1/(P/2 (1 – P) – sqrt P/20) dP + 1`
`:. r = 0.8,\ s = 1 and q = 0.62`
d. `P(3.5) ~~ P(3) + h* (dP)/(dt)|_(P= 0.75)`
`= 0.75 + 0.5 (0.75/2 (1 – 0.75) – sqrt 0.75/20)`
`~~ 0.775`
`:. P~~0.775\ \ text(when)\ \ t=3.5`
Consider `(dy)/(dx) = 2x^2 + x + 1`, where `y(1) = y_0 = 2`.
Using Euler's method with a step size of 0.1, an approximation to `y(0.8) = y_2` is given by
`B`
`y(0.9)~~y_1` | `= y_0 + h * (dy)/(dx)|_{(x_0,y_0)}` |
`= 2 – 0.1 xx (2 xx 1^2 + 1 + 1)` | |
`= 2 – 0.1(4)` | |
`= 2 – 0.4` | |
`= 1.6` |
`y(0.8)~~y_2` | `= y_1 + h*(dy)/(dx)|_{(x_1,y_1)}` |
`= 1.6 – 0.1(2(0.9)^2 + 0.9 + 1)` | |
`= 1.248` |
`=>B`
Let `(dy)/(dx) = x^3 - xy` and `y = 2` when `x = 1`.
Using Euler’s method with a step size of 0.1, the approximation to `y` when `x = 1.1` is
A. 0.9
B. 1.0
C. 1.1
D. 1.9
E. 2.1
`D`
`text(When)\ \ x=1,\ \ y=2.`
`text(Using Euler when)\ \ x=1.1`
`y(1.1)` | `~~ 2 + 0.1 xx (1^3 – 1 xx 2)` |
`= 1.9` |
`=> D`