SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, SPEC2 2023 VCAA 4

A fish farmer releases 200 fish into a pond that originally contained no fish. The fish population, \(P\), grows according to the logistic model,  \(\dfrac{d P}{d t}=P\left(1-\dfrac{P}{1000}\right)\) , where \(t\) is the time in years after the release of the 200 fish.

  1. The above logistic differential equation can be expressed as
  2. \(\displaystyle \int \frac{A}{P}+\dfrac{B}{1-\dfrac{P}{1000}} d P=\int dt \text {, where } A, B \in R .\)
  3. Find the values of \(A\) and \(B\).  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

One form of the solution for \(P\) is  \(P=\dfrac{1000}{1+D e^{-t}}\ \),  where \(D\) is a real constant.

  1. Find the value of \(D\).  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

The farmer releases a batch of \(n\) fish into a second pond, pond 2 , which originally contained no fish. The population, \(Q\), of fish in pond 2 can be modelled by  \(Q=\dfrac{1000}{1+9 e^{-1.1 t}}\),  where \(t\) is the time in years after the \(n\) fish are released.

  1. Find the value of \(n\).  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the value of \(Q\) when \(t=6\).
  3. Give your answer correct to the nearest integer.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4.  i. Given that  \(\dfrac{dQ}{dt}=\dfrac{11}{10} Q\left(1-\dfrac{Q}{1000}\right)\),  express  \(\dfrac{d^2 Q}{d t^2}\)  in terms of \(Q\).  (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  5. ii. Hence or otherwise, find the size of the fish population in pond 2 and the value of \(t\) when the rate of growth of the population is a maximum. Give your answer for \(t\) correct to the nearest year.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  6. Sketch the graph of \(Q\) versus \(t\) on the set of axes below. Label any axis intercepts and any asymptotes with their equations.  (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---

     

The farmer wishes to take 5.5% of the fish from pond 2 each year. The modified logistic differential equation that would model the fish population, \(Q\), in pond 2 after \(t\) years in this situation is

\(\dfrac{d Q}{d t}=\dfrac{11}{10}\, Q\left(1-\dfrac{Q}{1000}\right)-0.055Q\)

  1. Find the maximum number of fish that could be supported in pond 2 in this situation.  (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(A=1, \quad B=\dfrac{1}{1000}\)

b.   \(\Rightarrow D=4\)

c.    \(n=\dfrac{1000}{1+9 e^0}=100\)

d.   \(Q=\dfrac{1000}{1+9 e^{-6.6}} \approx 988\)

e.i.  \(Q^{\prime}=\frac{121}{100}\, Q\left(1-\frac{Q}{1000}\right)^2-\frac{121}{100\ 000}\left(1-\frac{Q}{1000}\right)\)

e.ii. \(t=2\)

f.   


g.  \(Q=950\)

Show Worked Solution

a.    \(\dfrac{dP}{dt}=P\left(1-\dfrac{P}{1000}\right) \ \Rightarrow \ \dfrac{d t}{d P}=\dfrac{1}{P}\left(\dfrac{1}{1-\frac{P}{1000}}\right)\)

\(\text{Expand (by CAS):}\)

\(\dfrac{1}{P}\left(\dfrac{1}{1-\frac{P}{1000}}\right)=\dfrac{1}{P}-\dfrac{1}{(P-1000)}=\dfrac{1}{P}+\dfrac{1}{1000}\left(\dfrac{1}{1-\frac{P}{1000}}\right)\)

\(A=1, \quad B=\dfrac{1}{1000}\)
 

♦ Mean mark (a) 48%.

b.   \(\text{When}\ \ t=0, P=200 \text{ (given)}\)

\(\text{Solve}\ \ 200=\dfrac{1000}{1+D e^0}\ \ \text{for}\  t:\)

\(\Rightarrow D=4\ \ \text {(by CAS):}\)
 

c.    \(Q=\dfrac{1000}{1+9 e^{-1.1 t}}\)

\(\text{At}\ \ t=0, Q=n\):

\(n=\dfrac{1000}{1+9 e^0}=100\)
 

d.    \(\text{Find } Q \text{ when } t=6:\)

\(Q=\dfrac{1000}{1+9 e^{-6.6}} \approx 988\)
 

e.i.  \(\dfrac{d Q}{d t}=\dfrac{11}{10}\, Q\left(1-\dfrac{Q}{1000}\right)\)

\(\text{Using the product rule:}\)

\begin{aligned}
Q^{\prime \prime} & =\frac{11}{10}\left[Q^{\prime}\left(1-\frac{Q}{1000}\right)+Q\left(-\frac{1}{1000}\, Q^{\prime}\right)\right] \\
& =\frac{11}{10}\left[\frac{11}{10}\, Q\left(1-\frac{Q}{1000}\right)^2-\frac{Q}{1000}\left(\frac{11}{10}\, Q\left(1-\frac{Q}{1000}\right)\right)\right] \\
& =\frac{121}{100}\, Q\left(1-\frac{Q}{1000}\right)^2-\frac{121}{100\ 000}\left(1-\frac{Q}{1000}\right)
\end{aligned}

 

♦♦♦ Mean mark (e)(i) 21%.

e.ii. \(\text{Max } Q^{\prime} \Rightarrow Q^{\prime \prime}=0\)

\(\text{Solve } Q^{\prime \prime}=0 \ \ \text {(by CAS):}\)

\(\Rightarrow Q=500\)

\(\text{Solve } Q=500 \text{ for } t \text{ (by CAS):}\)

\(t=1.99 \ldots=2 \ \text{(nearest year)}\)
 

f.   


g.  \(\text{Solve for } Q \ \text{(by CAS):}\)

\(\dfrac{d Q}{d t}=\dfrac{11}{10}\, Q\left(1-\dfrac{Q}{1000}\right)-0.055\,Q=0\)

\(\Rightarrow Q=950\)

♦ Mean mark (g) 40%.

Filed Under: Applied Contexts Tagged With: Band 3, Band 4, Band 5, smc-1184-60-Growth and decay

Calculus, SPEC2 2019 VCAA 3

  1. The growth and decay of a quantity `P` with respect to time `t` is modelled by the differential equation
     
    `qquad qquad(dP)/(dt) = kP`
     
    where `t >= 0`.

    1. Given that  `P(a) = r`  and  `P(b) = s`, where `P` is a function of `t`,

       

      show that  `k = 1/(a-b)log_e(r/s)`.   (2 marks)

      --- 6 WORK AREA LINES (style=lined) ---

    2. Specify the condition(s) for which  `k >0`.   (2 marks)

      --- 5 WORK AREA LINES (style=lined) ---

  2. The growth of another quantity `Q` with respect to time `t` is modelled by the differential equation
     
       `qquad qquad (dQ)/(dt) = e^(t-Q)`
      
    where  `t >= 0`  and  `Q = 1`  when  `t = 0`.

    1. Express this differential equation in the form  `int f(Q)\ dQ = int h(t)\ dt`.   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

    2. Hence, show that  `Q = log_e(e^t + e-1)`.   (2 marks)

      --- 5 WORK AREA LINES (style=lined) ---

    3. Show that the graph of `Q` as a function of `t` does not have a point of inflection.   (2 marks)

      --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
    1. `text(See Worked Solutions)`
    2. `a-b\ text(and)\ s > r > 0`
    1. `int e^Q\ dQ =  int e^t\ dt`
    2. `text(See Worked Solutions)`
    3. `text(See Worked Solutions)`
Show Worked Solution
a.i.    `(dP)/(dt)` `= kP`
  `(dt)/(dP)` `= 1/(kP)`

`t = 1/k int 1/P\ dP = 1/k log_e P + c`

`P(a) = r`

`a = 1/k · log_e r + c`

`P(b) = r`

`b = 1/k · log_e s + c`

`a-b` `= 1/k(log_e r + c-log_e s + c)`
`:.k` `= 1/(a-b)log_e (r/s)`

 

a.ii.   `text(Conditions for)\ \ k > 0,`

`text(Scenario 1:)`

`a-b > 0\ \ text(and)\ \ log_e(r/s) > 0`

`=> a > b\ \ text(and)\ \ r > s > 0`
 

`text(Scenario 2:)`

`a-b < 0\ \ text(and)\ \ log_e(r/s) < 0`

`=> a < b\ \ text(and)\ \ s > r > 0`
 

b.i.    `(dQ)/(dt)` `= (e^t)/(e^Q)`
  `int e^Q dQ` `= int e^t\ dt`

 

b.ii.    `int e^Q dQ` `= int e^t dt`
  `e^Q` `= e^t + c`

 
`text(When)\ \ Q = 1,  t = 0`

`e` `= e^0 + c`
`c` `= e-1`
`e^Q` `= e^t + e-1`

 
`:. Q = log_e(e^t + e-1)`

 

b.iii.   `Q = log_e(e^t + e-1)`

`(dQ)/(dt)` `= (e^t)/(e^t + e-1)`
`(d^2Q)/(dt^2)` `= (e^t(e-1))/((e^t + e-1)^2)`

 
`(d^2Q)/(dt^2) > 0\ text(for)\ t >= 0`

`:.\ text(No POI)`

Filed Under: Applied Contexts Tagged With: Band 4, Band 5, smc-1184-60-Growth and decay

Calculus, SPEC2-NHT 2017 VCAA 3

Bacteria are spreading over a Petri dish at a rate modelled by the differential equation

`(dP)/(dt) = P/2 (1-P),\ 0 < P < 1`

where  `P`  is the proportion of the dish covered after  `t`  hours.

    1. Express  `2/(P(1-P))`  in partial fraction form.   (1 mark)

      --- 4 WORK AREA LINES (style=lined) ---

    2. Hence show by integration that  `(t-c)/2= log_e(P/(1-P))`, where  `c`  is a constant of integration.   (2 marks)

      --- 5 WORK AREA LINES (style=lined) ---

    3. If half of the Petri dish is covered by the bacteria at  `t = 0`, express  `P`  in terms of  `t`.   (2 marks)

      --- 5 WORK AREA LINES (style=lined) ---

After one hour, a toxin is added to the Petri dish, which harms the bacteria and reduces their rate of growth. The differential equation that models the rate of growth is now

`(dP)/(dt) = P/2 (1-P)-sqrt P/20`  for  `t >= 1`

  1. Find the limiting value of  `P`, which is the maximum possible proportion of the Petri dish that can now be covered by the bacteria. Give your answer correct to three decimal places.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. The total time, `T`  hours, measured from time  `t = 0`, needed for the bacteria to cover 80% of the Petri dish is given by
     

     

    `qquad qquad T = int_q^r (1/(P/2(1-P)-sqrt P/20)) dP + s`
     

     

    where  `q, r and s in R`.

     

     

    Find the values of  `q, r` and `s`, giving the value of `q` correct to two decimal places.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  1. Given that  `P = 0.75`  when  `t = 3`, use Euler’s method with a step size of 0.5 to estimate the value of `P` when  `t = 3.5`. Give your answer correct to three decimal places.   (3 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
    1. `2/(P(1-P)) = 2/P + 2/(1-P)`
    2. `text(Proof)\ text{(See Worked Solutions)}`
    3. `P = e^(t/2)/(1 + e^(t/2))`
  1. `P ~~ 0.894`
  2. `r = 0.8`
    `s = 1`
    `q ~~ 0.62`
  3. `~~ 0.775`
Show Worked Solution

a.i.   `2/(P(1-P)) = A/P + B/(1 ⋅ P)`

`A(1-P) + BP = 2`

`text(If)\ \ P = 0\ \ =>\ \ A = 2`

`text(If)\ \ P = 1\ \ =>\ \ B = 2`

`:. 2/(P(1-P)) = 2/P + 2/(1-P)\ \ \ text{(can also solve by CAS)}`

 

a.ii.  `(dt)/(dP) = 2/(P(1-P)) = 2/P + 2/(1-P)`

`t` `= int 2/P + 2/(1-P)\ dP`
  `= 2 ln |P|-2ln|1-P| + c`
`(t-c)/2` `=ln|P|-ln|1-P|`
  `=ln |(P)/(1-P)|`
  `= ln (P/(1-P))`

  
`text(S)text(ince)\ \ 0 < P < 1 :\ |P| = P\ and\ |1-P| = 1-P`


a.iii.
  `text(When)\ \ t=0,\ P=0.5`

`(-c)/2` `= ln (0.5/0.5)`
`c` `= ln (1) = 0`

 

`t/2` `= ln (P/(1-P))\ \ \ text{(solve manually or by CAS)}`
`e^(t/2)` `= P/(1-P)`
`e^(t/2) (1-P)` `= P`
`e^(t/2)-Pe^(t/2)` `= P`
`e^(t/2)` `= P(1 + e^(t/2))`
`:. P` `= e^(t/2)/(1 + e^(t/2))`

 

b.   `(dP)/(dt) = P/2 (1-P)-sqrt P/20`

`text(Limiting value occurs when)\ \ (dP)/(dt) = 0,`

`P ~~ 0.894\ \ \ text{(by CAS)}`
 

`=>\ text(Lower solution values at levels already exceeded)`

 `text(are ignored.)`

 

c.   `(dt)/(dP) = 1/(P/2 (1-P)-sqrt P/20)\ \ text(for)\ \ t>=1`

`text(When)\ \ t=1\ \ =>\ \ P=0.622`
 

`T = int_0.62^0.8 1/(P/2 (1-P)-sqrt P/20) dP + 1`
 

`:. r = 0.8,\ s = 1 and q = 0.62`

 

d.   `P(3.5) ~~ P(3) + h* (dP)/(dt)|_(P= 0.75)`

   `= 0.75 + 0.5 (0.75/2 (1-0.75)-sqrt 0.75/20)`

   `~~ 0.775`
 

`:. P~~0.775\ \ text(when)\ \ t=3.5`

Filed Under: Applied Contexts, Euler, Pseudocode and Slope Fields Tagged With: Band 3, Band 4, Band 5, smc-1183-10-Euler method, smc-1184-60-Growth and decay

Copyright © 2014–2025 SmarterEd.com.au · Log in