Prove \(\dfrac{1+\cot \theta}{1+\tan \theta}=\cot \theta\). (3 marks) --- 8 WORK AREA LINES (style=lined) ---
Show Answers Only
\(\text{LHS}\) | \(=\dfrac{1+\dfrac{\cos \theta}{\sin \theta}}{1+\dfrac{\sin \theta}{\cos \theta}}\) | |
\(=\dfrac{\dfrac{\sin \theta+\cos \theta}{\sin \theta}}{\dfrac{\cos \theta+\sin \theta}{\cos \theta}}\) | ||
\(=\dfrac{\sin \theta+\cos \theta}{\sin \theta} \times \dfrac{\cos \theta}{\cos \theta+\sin \theta}\) | ||
\(=\dfrac{\cos \theta}{\sin \theta}\) | ||
\(=\cot \theta\) | ||
\(\ =\text{ RHS}\) |
Show Worked Solution
\(\text{LHS}\) | \(=\dfrac{1+\dfrac{\cos \theta}{\sin \theta}}{1+\dfrac{\sin \theta}{\cos \theta}}\) | |
\(=\dfrac{\dfrac{\sin \theta+\cos \theta}{\sin \theta}}{\dfrac{\cos \theta+\sin \theta}{\cos \theta}}\) | ||
\(=\dfrac{\sin \theta+\cos \theta}{\sin \theta} \times \dfrac{\cos \theta}{\cos \theta+\sin \theta}\) | ||
\(=\dfrac{\cos \theta}{\sin \theta}\) | ||
\(=\cot \theta\) | ||
\(\ =\text{ RHS}\) |