Prove that
\(\dfrac{\sin ^4 \theta+\cos ^4 \theta}{\sin ^2 \theta\, \cos ^2 \theta}+2=\sec ^2 \theta\, \operatorname{cosec}^2 \theta\). (2 marks)
--- 10 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Prove that
\(\dfrac{\sin ^4 \theta+\cos ^4 \theta}{\sin ^2 \theta\, \cos ^2 \theta}+2=\sec ^2 \theta\, \operatorname{cosec}^2 \theta\). (2 marks)
--- 10 WORK AREA LINES (style=lined) ---
\(\text{See Worked Solutions}\)
\(\text{Note: RHS } =\sec ^2 \theta\, \operatorname{cosec}^2 \theta=\dfrac{1}{\sin ^2 \theta\, \cos ^2 \theta}\)
| \(\text{RHS}\) | \(=\dfrac{\sin ^4 \theta+\cos ^4 \theta}{\sin ^2 \theta \cos ^2 \theta}+2\) |
| \(=\dfrac{\sin ^4 \theta+\cos ^4 \theta+2 \sin ^2 \theta \cos ^2 \theta}{\sin ^2 \theta\, \cos ^2 \theta}\) | |
| \(=\dfrac{\left(\sin ^2 \theta+\cos ^2 \theta\right)^2}{\sin ^2 \theta\, \cos ^2 \theta}\) | |
| \(=\dfrac{1}{\sin ^2 \theta\, \cos ^2 \theta}\) | |
| \(=\sec ^2 \theta\, \operatorname{cosec} ^2 \theta\) |
Prove \(\dfrac{1+\cot \theta}{1+\tan \theta}=\cot \theta\). (3 marks) --- 8 WORK AREA LINES (style=lined) ---
| \(\text{LHS}\) | \(=\dfrac{1+\dfrac{\cos \theta}{\sin \theta}}{1+\dfrac{\sin \theta}{\cos \theta}}\) | |
| \(=\dfrac{\dfrac{\sin \theta+\cos \theta}{\sin \theta}}{\dfrac{\cos \theta+\sin \theta}{\cos \theta}}\) | ||
| \(=\dfrac{\sin \theta+\cos \theta}{\sin \theta} \times \dfrac{\cos \theta}{\cos \theta+\sin \theta}\) | ||
| \(=\dfrac{\cos \theta}{\sin \theta}\) | ||
| \(=\cot \theta\) | ||
| \(\ =\text{ RHS}\) |
| \(\text{LHS}\) | \(=\dfrac{1+\dfrac{\cos \theta}{\sin \theta}}{1+\dfrac{\sin \theta}{\cos \theta}}\) | |
| \(=\dfrac{\dfrac{\sin \theta+\cos \theta}{\sin \theta}}{\dfrac{\cos \theta+\sin \theta}{\cos \theta}}\) | ||
| \(=\dfrac{\sin \theta+\cos \theta}{\sin \theta} \times \dfrac{\cos \theta}{\cos \theta+\sin \theta}\) | ||
| \(=\dfrac{\cos \theta}{\sin \theta}\) | ||
| \(=\cot \theta\) | ||
| \(\ =\text{ RHS}\) |
Prove \(\dfrac{\operatorname{cosec} \theta+\sec \theta}{1+\tan \theta}=\operatorname{cosec} \theta\). (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
\(\text{Prove:}\ \ \dfrac{\operatorname{cosec} \theta+\sec \theta}{1+\tan \theta}=\operatorname{cosec} \theta\)
| \(\text{LHS}\) | \(= \dfrac{\operatorname{cosec} \theta + \sec \theta}{1 + \tan \theta}\) | |
| \(=\dfrac{\dfrac{1}{\sin \theta} + \dfrac{1}{\cos \theta}}{1 + \dfrac{\sin \theta}{\cos \theta}} \times \dfrac{\cos \theta}{\cos \theta} \) | ||
| \(=\dfrac{\dfrac{\cos \theta}{\sin \theta}+1}{\cos \theta+\sin \theta}\) | ||
| \(=\dfrac{\dfrac{\cos \theta+\sin \theta}{\sin \theta}}{\cos \theta+\sin \theta}\) | ||
| \(=\dfrac{1}{\sin \theta}\) | ||
| \(=\operatorname{cosec} \theta \quad \text{… as required.}\) |
\(\text{Prove:}\ \ \dfrac{\operatorname{cosec} \theta+\sec \theta}{1+\tan \theta}=\operatorname{cosec} \theta\)
| \(\text{LHS}\) | \(= \dfrac{\operatorname{cosec} \theta + \sec \theta}{1 + \tan \theta}\) | |
| \(=\dfrac{\dfrac{1}{\sin \theta} + \dfrac{1}{\cos \theta}}{1 + \dfrac{\sin \theta}{\cos \theta}} \times \dfrac{\cos \theta}{\cos \theta} \) | ||
| \(=\dfrac{\dfrac{\cos \theta}{\sin \theta}+1}{\cos \theta+\sin \theta}\) | ||
| \(=\dfrac{\dfrac{\cos \theta+\sin \theta}{\sin \theta}}{\cos \theta+\sin \theta}\) | ||
| \(=\dfrac{1}{\sin \theta}\) | ||
| \(=\operatorname{cosec} \theta \quad \text{… as required.}\) |
Prove that `sec theta-cos theta = sin theta\ tan theta.` (2 marks)
| `text(LHS)` | `=1/cos theta-cos theta` | |
| `=(1-cos^2 theta)/cos theta` | ||
| `=sin^2 theta/cos theta` | ||
| `=sin theta * sin theta/cos theta` | ||
| `=sin theta\ tan theta\ …\ text(as required)` |
| `text(LHS)` | `=1/cos theta-cos theta` | |
| `=(1-cos^2 theta)/cos theta` | ||
| `=sin^2 theta/cos theta` | ||
| `=sin theta * sin theta/cos theta` | ||
| `=sin theta\ tan theta\ …\ text(as required)` |
Prove that
`(1 - sin^2 x cos^2 x)/(sin^2 x) = cot^2 x + sin^2 x`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
| `text(RHS)` | `= (cos^2 x)/(sin^2 x) + sin^2 x` |
| `= (cos^2 x + sin^4 x)/(sin^2 x)` | |
| `= (cos^2 x + sin^2 x(1 – cos^2 x))/(sin^2 x)` | |
| `= (cos^2 x + sin^2 x – sin^2 x cos^2 x)/(sin^2 x)` | |
| `= (1 – sin^2 x cos^2 x)/(sin^2 x)` | |
| `= \ text(LHS)` |
Prove that
`(secx + tanx)(secx - tanx) = 1`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
| `text(LHS)` | `= (secx + tanx)(secx – tanx)` |
| `= sec^2x – tan^2x` | |
| `= 1/(cos^2x) – (sin^2 x)/(cos^2 x)` | |
| `= (1 – sin^2 x)/(cos^2 x)` | |
| `= (cos^2 x)/(cos^2 x)` | |
| `= 1` | |
| `=\ text(RHS)` |
Which expression is equivalent to `tan theta + cot theta`?
`B`
| `tan theta + cot theta` | `= (sin theta)/(cos theta) + (cos theta)/(sin theta)` |
| `= (sin^2 theta + cos^2 theta)/(cos theta sin theta)` | |
| `= 1/(cos theta sin theta)` | |
| `= sec theta\ text(cosec)\ theta` |
`=> B`
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text(Prove)\ \ cos theta tan theta = sin theta`
| `text(LHS)` | `= cos theta tan theta` |
| `= cos theta ((sin theta)/(cos theta))` | |
| `= sin theta` | |
| `=\ text{RHS}` |
| ii. | `8 sin theta cos theta tan theta` | `= text(cosec)\ theta` |
| `:. 8 sin theta(sin theta)` | `= text(cosec)\ theta,\ \ \ \ text{(part (i))}` | |
| `8 sin^2 theta` | `= 1/(sin theta)` | |
| `8 sin^3 theta` | `= 1` | |
| `sin^3 theta` | `= 1/8` | |
| `sin theta` | `= 1/2` | |
| `:. theta` | `= pi/6, (5pi)/6\ \ \ \ text{(for}\ \ 0 ≤ theta ≤ 2pi text{)}` |
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
`int_0^(pi/4) 1/(1 - sinx)\ dx`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Need to prove)`
`sec^2x + secxtanx = (1 + sinx)/(cos^2x)`
| `text(LHS)` | `=sec^2x + secx tanx` |
| `=1/(cos^2x) + 1/(cosx) xx (sinx)/cosx` | |
| `=1/(cos^2x) + (sinx)/(cos^2x)` | |
| `=(1 + sinx)/(cos^2x)` | |
| `= text(RHS)\ \ \ \ text(… as required)` |
ii. `text(Need to prove)`
| `sec^2x + secx tanx` | `= 1/(1\ – sinx)` |
| `text(i.e.)\ \ (1 + sinx)/(cos^2x)` | `= 1/(1\ – sin x)\ \ \ \ \ text{(part (i))}` |
| `text(LHS)` | `= (1 + sinx)/(cos^2x)` |
| `=(1 + sin x)/(1\ – sin^2x)` | |
| `=(1 + sinx)/((1\ – sinx)(1 + sinx)` | |
| `=1/(1\ – sinx)\ \ \ \ text(… as required)` |
iii. `int_0^(pi/4) 1/(1\ – sinx)\ dx`
`= int_0^(pi/4) (sec^2x + secx tanx)\ dx`
`= [tanx + secx]_0^(pi/4)`
`= [(tan(pi/4) + sec(pi/4)) – (tan0 + sec0)]`
`= [(1 + 1/(cos(pi/4)))\ – (0 + 1/(cos0))]`
`= 1 + sqrt2\ – 1`
`= sqrt2`