A complex number \(z\) lies on the unit circle in the complex plane, as shown in the diagram.
Which of the following complex numbers is equal to \(\bar{z}\) ?
- \(-z\)
- \(z^2\)
- \(-z^3\)
- \(z^4\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
A complex number \(z\) lies on the unit circle in the complex plane, as shown in the diagram.
Which of the following complex numbers is equal to \(\bar{z}\) ?
\(B\)
\(z=e^{-\small{\dfrac{2i \pi}{3}}}, \ \bar z=e^{\small{\dfrac{2i \pi}{3}}} \)
\(\text{By trial and error:}\)
\(z^2=e^{-\small{\dfrac{2 \times 2i \pi}{3}}} = e^{-\small{\dfrac{4i \pi}{3}}}=e^{\small{\dfrac{2i \pi}{3}}} =\bar z \)
\(\Rightarrow B\)
--- 8 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i.
\(\text {Let}\ \ z=-\sqrt{3}+i\)
\(\abs{z}=\sqrt{(-\sqrt{3})^2+1^2}=2\)
\(\text{Find}\ \ \arg (z):\)
\(\tan \theta=\dfrac{1}{\sqrt{3}} \Rightarrow \theta=\dfrac{\pi}{6}\)
\(\Rightarrow \arg (z)=\dfrac{5 \pi}{6}\)
| \(\therefore z\) | \(=2\left(\dfrac{\cos (5 \pi)}{6}+\dfrac{\sin (5 \pi)}{6} i\right)\) | |
| \(=2 e^{\small{\dfrac{5 \pi}{6}} i}\) |
| ii. | \((-\sqrt{3}+i)^{10}\) | \(=\left(2 e^{\small{\dfrac{5 \pi}{6}} i}\right)^{10}\) |
| \(=2^{10} e^{\small{\dfrac{50 \pi}{6}} i}\) | ||
| \(=1024 e^{\small{\dfrac{\pi}{3}} i}\) | ||
| \(=1024\left(\cos \left(\dfrac{\pi}{3}\right)+\sin \left(\dfrac{\pi}{3}\right) i\right)\) | ||
| \(=1024\left(\dfrac{1}{2}+\dfrac{\sqrt{3}}{2} i\right)\) | ||
| \(=512+512 \sqrt{3} i\) |
--- 2 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
| i. | `e^(i n theta) + e^(-i n theta)` | `= cos(n theta) + i sin(n theta) + cos(-n theta) + i sin(-n theta)` |
| `= cos(n theta) + i sin(n theta) + cos(n theta) – i sin(n theta)` | ||
| `= 2 cos (n theta)` |
| ii. | `(e^{i theta} + e^{-i theta})^4` | `= (2 cos theta)^4` |
| `= 16 cos^4 theta` |
`text{Expand} \ (e^{i theta} + e^{-i theta})^4 :`
`e^(i 4 theta) + 4 e^(i 3 theta) e^(-i theta) + 6 e^(i 2 theta) e^(-i 2 theta) + 4 e^(i theta) e^(-i 3 theta) + e^(-i 4 theta)`
`= e^(i 4 theta) + 4e^(i 2 theta) + 6 + 4^(-i 2 theta) + e^(-i 4 theta)`
`= e^(i 4 theta) + e^(i 4 theta) + 4 (e^{i 2 theta} + e^{-i 2 theta}) + 6`
`= 2 cos (4 theta) + 8 cos (2 theta) + 6`
| `therefore \ 16 cos^4 theta` | `= 2 cos (4 theta) + 8 cos (2 theta) + 6` |
| `cos^4 theta` | `= frac{1}{8} cos(4 theta) + 1/2 cos(2 theta) + 3/8` |
| `cos^4 theta` | `= frac{1}{8} (cos(4 theta) + 4 cos(2 theta) + 3)` |
| iii. | `int_0^(frac{pi}{2}) cos^4 theta\ d theta` | `= frac{1}{8} int_0^(frac{pi}{2}) cos(4 theta) + 4 cos(2 theta) + 3\ d theta` |
| `= frac{1}{8} [ frac{1}{4} sin(4 theta) + 2 sin (2 theta) + 3 theta ]_0^(frac{pi}{2}` | ||
| `= frac{1}{8} [( frac{1}{4} sin (2 pi) + 2 sin pi + frac{3 pi}{2}) – 0 ]` | ||
| `= frac{1}{8} ( frac{3 pi}{2})` | ||
| `= frac{3 pi}{16}` |