Of the following expressions, which one need NOT contain a term involving a logarithm in its anti-derivative?
- `(x+2)/(x^(2)+4x+5)`
- `(x+2)/(x^(2)-4x-5)`
- `(x-1)/(x^(3)-x^(2)+x-1)`
- `(x+1)/(x^(3)-x^(2)+x-1)`
Aussie Maths & Science Teachers: Save your time with SmarterEd
Of the following expressions, which one need NOT contain a term involving a logarithm in its anti-derivative?
`C`
`text{Consider the denominator of}\ C:`
`x^(3)-x^(2)+x-1` | `=x^2(x-1)+(x-1)` | |
`=(x^2+1)(x-1)` |
`(x-1)/(x^(3)-x^(2)+x-1)=(x-1)/((x^2+1)(x-1))=1/(x^2+1)`
`int 1/(x^2+1)\ dx=tan^(-1)(x)+c`
`=>C`
Evaluate `int_0^1 (2x + 1)/(x^2 + 1)\ dx`. (3 marks)
`text(See Worked Solutions)`
`int_0^1 (2x + 1)/(x^2 + 1)\ dx` | `= int_0^1 (2x)/(x^2 + 1)\ dx + int_0^1 1/(x^2 + 1)\ dx` |
`= [log_e(x^2 + 1)]_0^1 + [tan^(-1)(x)]_0^1` | |
`= log_e 2 – log_e 1 + tan^(-1)(1) – tan^(-1)(0)` | |
`= log_e 2 + pi/4` |
Find `int {2x + 3}/{x^2 + 2x + 2} dx`. (3 marks)
`ln (x^2 + 2x + 2) + tan^{-1} (x + 1) + c`
`int {2x + 3}/{x^2 + 2x + 2} dx` | `= int {2x + 2}/{x^2 + 2x + 2} dx + int {1}/{(x – 1)^2 + 1} dx` |
`= ln (x^2 + 2x + 2) + tan^{-1} (x + 1) + c` |
Which expression is equal to `int frac{1}{x^2 + 4x + 10}\ dx`?
`A`
`int frac{1}{x^3 + 4x + 10}\ dx` | `= int frac{1}{(x + 2)^2 + (sqrt6)^2}\ dx` |
`= frac{1}{6} tan^-1 (frac{x + 2}{sqrt6}) + c` |
`=> \ A`
By completing the square and using the table of standard integrals, find
`int(dx)/(4x^2-4x+10)` (2 marks)
`1/6 tan^-1((2x-1)/(3))+C`
`int(dx)/(4x^2-4x+10)` | `=int(dx)/(3^2+(2x-1)^2)` |
`=1/2 int 2/(3^2+(2x-1)^2) \ dx` | |
`=1/6 tan^-1((2x-1)/(3))+C` |
Find `int (dx)/(x^2 + 10x + 29)` (2 marks)
`1/2 tan^(-1) ((x + 5)/2) + C`
`int (dx)/(x^2 + 10x + 29)` | `= int (dx)/((x + 5)^2 + 2^2)` |
`= 1/2 tan^(-1) ((x + 5)/2) + C` |
Which of these integrals has the largest value?
`D`
Find `int(x^2 + 2x)/(x^2 + 2x + 5)\ dx`. (3 marks)
`x – 5/2 tan^(−1) ((x + 1)/2) + c`
`int(x^2 + 2x)/(x^2 + 2x + 5)\ dx` | `= int((x^2 + 2x + 5) – 5)/(x^2 + 2x + 5)\ dx` |
`= int 1 – 5/(x^2 + 2x + 5)\ dx` | |
`= int 1 – 5/(2^2 + (x + 1)^2)\ dx` | |
`= x – 5/2 tan^(−1) ((x + 1)/2) + c` |
Find `int tan^2 x sec^2 x\ dx.` (2 marks)
`1/3 tan^3 x + c`
`int tan^2 x sec^2 x\ dx = 1/3 tan^3 x + c`
Which expression is equal to `int tan x\ dx?`
`B`
`int tan x\ dx =` | `int (sin x)/(cos x)\ dx` |
`=` | `-ln (cos x) + c` |
`=> B`
By completing the square, find
`int (dx)/(x^2 - 6x + 13)` (2 marks)
`1/2 tan^-1 ((x – 3)/2) + c`
`int (dx)/(x^2 – 6x + 13)` | `=int (dx)/((x – 3)^2 + 4)` |
`=1/2 tan^-1 ((x – 3)/2) + c` |
Find `int x^2/(1 + 4x^2)\ dx.` (3 marks)
`x/4 – 1/8 tan^-1 2x + c`
`x^2/(1 + 4x^2)` | `= 1/4 xx (4x^2)/(1 + 4x^2)` |
`= 1/4 xx (1 + 4x^2)/(1 + 4x^2) – 1/4 xx 1/(1 + 4x^2)` | |
`=1/4-1/4 xx 1/(1 + 4x^2)` |
`:.int x^2/(1 + 4x^2)\ dx` | `= 1/4 int 1\ dx – 1/4 int 1/(1 + 4x^2)\ dx` |
`= x/4 – 1/4 xx 1/2 tan^-1 2x + c` | |
`= x/4 – 1/8 tan^-1 2x + c` |
Evaluate `int_0^(pi/4) tan\ x\ dx`. (3 marks)
`1/2 ln 2 \ \ text(or)\ \ ln\ sqrt2`
`int_0^(pi/4) tan\ x\ dx` | `=int_0^(pi/4) (sin\ x)/(cos\ x)\ dx` |
`=[-ln\ cos\ x]_0^(pi/4)` | |
`=[-ln\ cos\ pi/4 – (-ln cos 0)]` | |
`=-ln\ 1/sqrt2 + ln\ 1` | |
`=ln sqrt2` | |
`=1/2 ln 2` |
Evaluate `int_-1^1 1/(5 - 2t + t^2) \ dt.` (3 marks)
`pi/8`
`int_-1^1 1/{(5 – 2t + t^2)}dt` | `= int_-1^1 1/{(4 + 1 – 2t + t^2)dt}` |
`= int_-1^1 1/(4 + (t – 1)^2)dt` | |
`= 1/2[tan^-1 ((t – 1)/2)]_-1^1` | |
`= 1/2 [tan^-1 0 – tan^(-1)(-1)]` | |
`= 1/2 [0 – (-pi/4)]` | |
`= pi/8` |
By completing the square, find `int (dx)/(x^2 + 4x + 5)`. (2 marks)
`tan^(−1)\ (x + 2) + c`
`int (dx)/(x^2 + 4x + 5)` | `= int (dx)/(x^2 + 4x + 4 + 1)` |
`= int (dx)/((x + 2)^2 + 1)` | |
` = tan^(−1)\ (x + 2) + c` |