SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, EXT2 C1 2023 HSC 13a

Find \({\displaystyle \int \frac{1-x}{\sqrt{5-4 x-x^2}}\ dx}\).  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

\(I=\sqrt{5-4x-x^2} + 3 \sin^{-1} \big{(} \dfrac{x+2}{3} \big{)} + c \)

Show Worked Solution

\(I\) \(={\displaystyle \int \frac{1-x}{\sqrt{5-4 x-x^2}}\ dx}\)  
  \(= \dfrac{1}{2} {\displaystyle \int \frac{2-2x}{\sqrt{5-4 x-x^2}}\ dx}\)  
  \(=\dfrac{1}{2} {\displaystyle \int \frac{-4-2x}{\sqrt{5-4 x-x^2}}\ dx} + \dfrac{1}{2} {\displaystyle \int \frac{6}{\sqrt{5-4 x-x^2}}\ dx}\)  

 
\(\text{Let}\ \ u=5-4x-x^2 \)

\( \dfrac{du}{dx}=-4-2x\ \ \Rightarrow\ \ du=-4-2x\ dx \)

\(I\) \(= \dfrac{1}{2} {\displaystyle \int u^{-\frac{1}{2}}\ du} + {\displaystyle 3 \int \frac{1}{\sqrt{9-(x+2)^2}}\ dx}\)  
  \(= u^{\frac{1}{2}} + 3 \sin^{-1} \big{(} \dfrac{x+2}{3} \big{)} + c \)  
  \(=  \sqrt{5-4x-x^2}+ 3 \sin^{-1} \big{(} \dfrac{x+2}{3} \big{)} + c \)  

Filed Under: Substitution and Harder Integration, Trig Integration Tagged With: Band 4, smc-1057-40-Other Functions, smc-1057-60-Substitution not given, smc-1193-10-sin/cos, smc-1193-50-Completing the square

Calculus, EXT2 C1 2020 HSC 6 MC

Which expression is equal to `int frac{1}{x^2 + 4x + 10}\ dx`?

  1. `frac{1}{sqrt(6)} tan^-1 (frac{x + 2}{sqrt{6} )) + c`
  2. `tan^-1 (frac{x + 2}{sqrt{6} )) + c`
  3. `frac{1}{2 sqrt(6)} ln | frac{x + 2 - sqrt(6)}{x + 2 + sqrt(6)} | + c`
  4. `ln | frac{x + 2 - sqrt(6)}{x + 2 + sqrt(6)} | + c`
Show Answers Only

`A`

Show Worked Solution
`int frac{1}{x^3 + 4x + 10}\ dx` `= int frac{1}{(x + 2)^2 + (sqrt6)^2}\ dx`
  `= frac{1}{6} tan^-1 (frac{x + 2}{sqrt6}) + c`

`=> \ A`

Filed Under: Trig Integration Tagged With: Band 2, smc-1193-15-tan, smc-1193-50-Completing the square

Calculus, EXT2 C1 SM-Bank 1

By completing the square and using the table of standard integrals, find

`int(dx)/(4x^2-4x+10)`   (2 marks)

Show Answers Only

`1/6 tan^-1((2x-1)/(3))+C`

Show Worked Solution
`int(dx)/(4x^2-4x+10)` `=int(dx)/(3^2+(2x-1)^2)`
  `=1/2 int 2/(3^2+(2x-1)^2) \ dx`
  `=1/6 tan^-1((2x-1)/(3))+C`

Filed Under: Trig Integration Tagged With: Band 3, smc-1193-15-tan, smc-1193-50-Completing the square

Calculus, EXT2 C1 2004 HSC 1c

By completing the square, find  `int (dx)/(sqrt (5+4x-x^2))` .  (2 marks)

Show Answers Only

`sin^-1((x-2)/(3))+C`

Show Worked Solution
`int(dx)/(sqrt(5+4x-x^2))` `=int(dx)/(sqrt(9-(x^2-4x+4)))`
  `=int(dx)/(sqrt(3^2-(x-2)^2)`
  `=sin^-1((x-2)/(3))+C`

Filed Under: Trig Integration Tagged With: Band 3, smc-1193-10-sin/cos, smc-1193-50-Completing the square

Calculus, EXT2 C1 2019 HSC 11c

Find  `int (dx)/(x^2 + 10x + 29)`  (2 marks)

Show Answers Only

`1/2 tan^(-1) ((x + 5)/2) + C`

Show Worked Solution
`int (dx)/(x^2 + 10x + 29)` `= int (dx)/((x + 5)^2 + 2^2)`
  `= 1/2 tan^(-1) ((x + 5)/2) + C`

Filed Under: Trig Integration Tagged With: Band 3, smc-1193-15-tan, smc-1193-50-Completing the square

Calculus, EXT2 C1 2018 HSC 12c

Find  `int(x^2 + 2x)/(x^2 + 2x + 5)\ dx`.  (3 marks)

Show Answers Only

`x – 5/2 tan^(−1) ((x + 1)/2) + c`

Show Worked Solution
`int(x^2 + 2x)/(x^2 + 2x + 5)\ dx` `= int((x^2 + 2x + 5) – 5)/(x^2 + 2x + 5)\ dx`
  `= int 1 – 5/(x^2 + 2x + 5)\ dx`
  `= int 1 – 5/(2^2 + (x + 1)^2)\ dx`
  `= x – 5/2 tan^(−1) ((x + 1)/2) + c`

Filed Under: Trig Integrals, Trig Integration Tagged With: Band 3, smc-1193-15-tan, smc-1193-50-Completing the square

Calculus, EXT2 C1 2006 HSC 1b

By completing the square, find

`int (dx)/(x^2 - 6x + 13)`  (2 marks)

Show Answers Only

`1/2 tan^-1 ((x – 3)/2) + c`

Show Worked Solution
`int (dx)/(x^2 – 6x + 13)` `=int (dx)/((x – 3)^2 + 4)`
  `=1/2 tan^-1 ((x – 3)/2) + c`

Filed Under: Trig Integrals, Trig Integration Tagged With: Band 2, smc-1193-15-tan, smc-1193-50-Completing the square

Calculus, EXT2 C1 2011 HSC 1e

Evaluate  `int_-1^1 1/(5 - 2t + t^2) \ dt.`  (3 marks)

Show Answers Only

`pi/8`

Show Worked Solution
`int_-1^1 1/{(5 – 2t + t^2)}dt` `= int_-1^1 1/{(4 + 1 – 2t + t^2)dt}`
  `= int_-1^1 1/(4 + (t – 1)^2)dt`
  `= 1/2[tan^-1 ((t – 1)/2)]_-1^1`
  `= 1/2 [tan^-1 0 – tan^(-1)(-1)]`
  `= 1/2 [0 – (-pi/4)]`
  `= pi/8`

Filed Under: Trig Integrals, Trig Integration Tagged With: Band 3, smc-1193-15-tan, smc-1193-50-Completing the square

Copyright © 2014–2025 SmarterEd.com.au · Log in