Find all possible values of `b` given `absvec(PQ)=sqrt76` where `P(-5,b,-2)` and `Q(-3,-2,4)`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find all possible values of `b` given `absvec(PQ)=sqrt76` where `P(-5,b,-2)` and `Q(-3,-2,4)`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`b=4\ \ text(or)\ \ -8`
`vec(PQ)=((-3),(-2),(4))-((-5),(b),(-2))=((2),(-2-b),(6))`
`absvec(PQ)` | `=sqrt(2^2+(-2-b)^2+6^2)` | |
`76` | `=(-2-b)^2+40` | |
`36` | `=(-2-b)^2` | |
`6` | `=+-(-2-b)` |
`-2-b=6\ \ =>\ \ b=-8`
`2+b=6\ \ =>\ \ b=4`
`:.b=4\ \ text(or)\ \ -8`
Find `(underset~i + 6underset~j) + (2underset~i - 7underset~j)`. (1 mark)
`3underset~i – underset~j`
`((1),(6)) + ((2),(-7)) = ((3),(-1)) = 3underset~i – underset~j`
What is the length of the vector `- underset~i + 18 underset~j - 6 underset~k`?
`B`
`text{Length}` | `= | – underset~i + 18 underset~j – 6 underset~k \ |` |
`= sqrt{(-1)^2 + 18^2 + (-6)^2}` | |
`= sqrt{361}` | |
`= 19` |
Given `lambda_1underset~a + lambda_2underset~b = [(50),(−45),(−8)]`, find `lambda_1` and `lambda_2` if
`underset~a = [(2),(−3),(4)]` and `underset~b = [(3),(−2),(−3)]`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`lambda_1 = 7, lambda_2 = 12`
`lambda_1underset~a + lambda_2underset~b = [(2lambda_1 + 3lambda_2),(−3lambda_1 – 2lambda_2),(4lambda_1 – 3lambda_2)]`
`2lambda_1 + 3lambda_2 = 50\ \ …\ (1)` | |
`4lambda_1 – 3lambda_2 = −8\ \ …\ (2)` |
`(1) + (2)`
`6lambda_1` | `= 42` |
`lambda_1` | `= 7` |
`text(Substitute)\ \ lambda_1=7\ \ text{into (1):}`
`14+3lambda_2` | `= 50` |
`lambda_2` | `= 12` |
The coordinates of three points are `A\ ((– 1), (2), (4)), \ B\ ((1), (0), (5)) and C\ ((3), (5), (2)).`
--- 2 WORK AREA LINES (style=lined) ---
Prove that the triangle has a right angle at `A.` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. | `vec(AB)` | `=(1 – −1)underset~i + (0 – 2)underset~j + (5 – 4)underset~k` |
`= 2underset~i – 2underset~j + underset~k` |
ii. | `overset(->)(AC)` | `= (3 – −1)underset~i + (5 – 2)underset~j + (2 – 4)underset~k` |
`= 4underset~i + 3underset~j – 2underset~k` |
`overset(->)(AB) · overset(->)(AC)` | `= 2 xx 4 + (−2) xx 3 + 1 xx (−2)` |
`= 8 – 6 – 2` | |
`= 0` |
`=> overset(->)(AB) ⊥ overset(->)(AC)`
`:. DeltaABC\ text(has a right angle at)\ A.`
iii. | `overset(->)(BC)` | `= (3 – 1)underset~i + (5 – 0)underset~j + (2 – 5)underset~k` |
`= 2underset~i + 5underset~j – 3underset~k` |
`|overset(->)(BC)|` | `= sqrt(2^2 + 5^2 + (−3)^2)` |
`= sqrt(4 + 25 + 9)` | |
`= sqrt38` |
Two vectors are given by `underset ~a = 4 underset ~i + m underset ~j - 3 underset ~k` and `underset ~b = −2 underset ~i + n underset ~j - underset ~k`, where `m`, `n in R^+`.
If `|\ underset ~a\ | = 10` and `underset ~a` is perpendicular to `underset ~b`, then find `m` and `n`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`m=5sqrt3, \ n=sqrt3/3`
`text(Using)\ \ |\ underset ~a\ | = 10:`
`10` | `= sqrt(4^2 + m^2 + (-3)^2)` |
`100` | `=m^2 +25` |
`m` | `= 5sqrt3` |
`text(S)text(ince)\ \ underset ~a _|_ underset ~b :`
`underset ~a ⋅ underset ~b` | `= 0` |
`0` | `=4 xx (−2) + mn + (−3) xx (−1)` |
`0` | `= mn-5` |
`n` | `=5/(5sqrt3)` |
`=sqrt3/3` |
Consider the three vectors
`underset ~a = underset ~i - underset ~j + 2underset ~k,\ underset ~b = underset ~i + 2 underset ~j + m underset ~k` and `underset ~c = underset ~i + underset ~j - underset ~k`, where `m in R.`
i. | `|underset~b|` | `= sqrt(1^2 + 2^2 + m^2)` | `= 2sqrt3` |
`1 + 4 + m^2` | `= 4 xx 3` | ||
`m^2` | `= 7` | ||
`m` | `= ±sqrt7` |
ii. | `underset~a * underset~b` | `= 1 xx 1 + (−1) xx 2 + 2 xx m` | |
`0` | `= 1 – 2 + 2m\ \ ( underset~a ⊥ underset~b)` | ||
`2m` | `= 1` | ||
`m` | `= 1/2` |
The distance from the origin to the point `P(7,−1,5sqrt2)` is
A. `7sqrt2`
B. `10`
C. `6 + 5sqrt2`
D. `100`
`B`
`d` | `= sqrt((7 – 0)^2 + (−1 – 0)^2 + (5sqrt2 – 0)^2)` |
`= sqrt(49 + 1 + 25 xx 2)` | |
`= 10` |
`=> B`
The distance between the points `P(−2 ,4, 3)` and `Q(1, −2, 1)` is
A. `7`
B. `sqrt 21`
C. `sqrt 31`
D. `49`
`A`
`d` | `= sqrt((-2 – 1)^2 + (4 – (-2))^2 + (3 – 1)^2)` |
`= sqrt(9 + 36 + 4)` | |
`= 7` |
`=> A`