Find an expression for `y` in terms of `x` given
`dy/dx=4y-3` and when `x=-2, \ y=1`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find an expression for `y` in terms of `x` given
`dy/dx=4y-3` and when `x=-2, \ y=1`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`dy/dx` | `=4y-3` | |
`(dy)/(4y-3)` | `=1\ dx` | |
`int 1/(4y-3)\ dy` | `=int 1\ dx` | |
`1/4ln abs(4y-3)` | `=x+c` |
`text{When}\ \ y=1, x=-2:`
`1/4ln(4-3)` | `=-2+c` | |
`c` | `=2` |
`1/4ln abs(4y-3)` | `=x+2` | |
`ln abs(4y-3)` | `=4(x+2)` | |
`4y-3` | `=+-e^(4(x+2))` | |
`4y-3` | `=e^(4(x+2)),\ \ (text{since}\ y(-2)=1)` | |
`4y` | `=e^(4(x+2))+3` | |
`y` | `=(e^(4(x+2))+3)/4` |
Which of the following could be the graph of a solution to the differential equation
`(dy)/(dx)=sin y+1?`
`B`
`text{One Strategy}`
`text{When}\ \ (dy)/(dx)=0:`
`siny=-1\ \ =>\ \ y=(3pi)/2 + 2kpi\ \ (kinZZ)`
`text{Graphically,}\ \ y=(3pi)/2 + 2kpi\ \ text{are horizontal asymptotes.}`
`=>B`
Solve `(dy)/(dx) = e^(2y)`, finding `x` as a function of `y`. (2 marks)
`x = −1/2 e^(−2y) + c`
`(dy)/(dx)` | `= e^(2y)` |
`(dx)/(dy)` | `= e^(−2y)` |
`x` | `= int e^(−2y)\ dy` |
`:. x` | `= −1/2 e^(−2y) + c` |
Let `(dy)/(dx) = (4 - y)^2`.
Express `y` in terms of `x`, where `y(0) = 3`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`y = 4-1/(x + 1)`
`(dy)/(dx)` | `=(4-y)^2` |
`(dx)/(dy)` | `= 1/(4-y)^2` |
`x` | `= int 1/(4-y)^2\ dy` |
`= int (4-y)^(-2) dy` | |
`= (-1)(-1)(4-y)^(-1)+ c` | |
`= 1/(4-y) + c` |
`text(When)\ \ x=0,\ \ y=3:`
`0` | `= 1/(4-3) + c` |
`:.c` | `= -1` |
`x` | `= 1/(4-y) – 1` |
`x + 1` | `= 1/(4-y)` |
`1/(x + 1)` | `= 4-y` |
`:. y` | `= 4-1/(x + 1)` |
Find `y` given `dy/dx = 1 - y/3` and `y = 4` when `x = 2`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`y= 3 + e^((2 – x)/3)`
`(dy)/(dx)` | `= (3 – y)/3` |
`(dx)/(dy)` | `= 3/(3 – y)` |
`x` | `= int 3/(3 – y)\ dy` |
`x/3` | `= -ln |3 – y| + c` |
`text(Given)\ \ y=4\ \ text(when)\ \ x=2:`
`2/3= -ln|-1| + c`
`c=2/3`
` x/3` | `=-ln |3 – y| +2/3` |
`ln|3-y|` | `= (2-x)/3` |
`3-y` | `= ±e^((2 – x)/3)` |
`:. y` | `= 3 + e^((2 – x)/3)` |