SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Algebra, STD2 EQ-Bank 21

Make `t` the subject of the equation  `s = 1/2 at^2`.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`t = sqrt((2s)/a)`

Show Worked Solution
`s` `= 1/2 at^2`
`2s` `= at^2`
`(2s)/a` `= t^2`
`t` `= sqrt((2s)/a)`

Filed Under: Formula Rearrange, Formula Rearrange, Formula Rearrange (Std 1), Formula Rearrange (Std 2) Tagged With: Band 4, smc-1200-20-Non-Linear, smc-1201-20-Non-Linear, smc-6236-20-Non-Linear, smc-6511-20-Non-Linear

Algebra, STD2 A1 2012 HSC 21 MC v1

Which of the following correctly expresses \(r\) as the subject of  \(V=\pi r^2+x\) ?

  1. \(r=\pm\sqrt{\dfrac{V}{\pi}}-x\)
  2. \(r=\pm\sqrt{\dfrac{V}{\pi}-x}\)
  3. \(r=\pm\sqrt{\dfrac{V-x}{\pi}}\)
  4. \(r=\pm\dfrac{\sqrt{V-x}}{\pi}\)
Show Answers Only

\(C\)

Show Worked Solution
\(V\) \(=\pi r^2+x\)
\(\pi r^2\) \(=V-x\)
\(r^2\) \(=\dfrac{V-x}{\pi}\)
\(\therefore\ r\) \(=\pm\sqrt{\dfrac{V-x}{\pi}}\)

\(\Rightarrow C\)

Filed Under: Formula Rearrange (Std 2-X) Tagged With: Band 4, eo-derivative (HSC), smc-1200-20-Non-Linear, smc-1201-20-Non-Linear, smc-5232-20-Non-Linear

Algebra, STD2 A1 SM-Bank 11

Make  `r`  the subject of the equation  `V = 4/3 pir^3`.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`r = root(3)((3V)/(4pi))`

Show Worked Solution
`V` `= 4/3 pir^3`
`3V` `=4pir^3`
`(3V)/4` `= pir^3`
`r^3` `= (3V)/(4pi)`
`r` `= root(3)((3V)/(4pi))`

Filed Under: Formula Rearrange (Std 1), Formula Rearrange (Std 2) Tagged With: Band 4, smc-1200-20-Non-Linear, smc-1201-20-Non-Linear

Algebra, STD2 A1 2017 HSC 28d

Make `y` the subject of the equation  `x = sqrt(yp-1)`.   (2 marks)

Show Answers Only

`y = (x^2 + 1)/p`

Show Worked Solution
♦ Mean mark 46%.
`x` `= sqrt(yp-1)`
`yp-1` `= x^2`
`yp` `= x^2 + 1`
`:. y` `= (x^2 + 1)/p`

Filed Under: Formula Rearrange, Formula Rearrange, Formula Rearrange, Formula Rearrange (Std 1), Formula Rearrange (Std 2) Tagged With: Band 5, smc-1200-20-Non-Linear, smc-1201-20-Non-Linear, smc-6236-20-Non-Linear, smc-6511-20-Non-Linear

Algebra, STD2 A1 SM-Bank 9

The volume of a sphere is given by  `V = 4/3 pi r^3`  where  `r`  is the radius of the sphere.

If the volume of a sphere is `\text{220 cm}^3`, find the radius, to 1 decimal place.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`3.7\ \ text{cm  (to 1 d.p.)}`

Show Worked Solution
`V` `= 4/3 pi r^3`
`3V` `= 4 pi r^3`
`r^3` `= (3V)/(4 pi)`

 

`text(When)\ \ V = 220`

`r^3` `= (3 xx 220)/(4 pi)`
  `= 52.521…`
`:. r` `=root3 (52.521…)`
  `= 3.744…\ \ \ text{(by calc)}`
  `= 3.7\ \ text{cm   (to 1 d.p.)}`

Filed Under: AM1 - Algebra (Prelim), Formula Rearrange, Formula Rearrange (Std 2), Substitution and Other Equations (Std 2) Tagged With: Band 4, smc-1116-20-Rearrange and Substitute, smc-1200-20-Non-Linear, smc-1201-20-Non-Linear, smc-789-20-Rearrange and Substitute

Algebra, STD2 A1 2005 HSC 24c

Make  `L`  the subject of the equation  `T = 2piL^2`.   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`± sqrt(T/(2pi))`

Show Worked Solution
`T` `= 2piL^2`
`L^2` `= T/(2pi)`
`:.L` `= ±sqrt(T/(2pi))`

Filed Under: Formula Rearrange, Formula Rearrange, Formula Rearrange, Formula Rearrange (Std 1), Formula Rearrange (Std 2), Index and Log Laws, Quadratics and Cubics Tagged With: Band 5, num-title-ct-pathc, num-title-qs-hsc, smc-1200-20-Non-Linear, smc-1201-20-Non-Linear, smc-4386-10-Rearrange equation, smc-4386-30-Quadratics (Monic), smc-6236-20-Non-Linear, smc-6511-20-Non-Linear

Algebra, STD2 A1 2006 HSC 18 MC

What is the formula for `q` as the subject of `4p =5t + 2q^2`?

  1. `q = +- sqrt(5t-4p)/2`
  2. `q = +- sqrt(4p + 5t)/2`
  3. `q = +- sqrt{(5t-4p)/2}`
  4. `q = +- sqrt{(4p-5t)/2}`
Show Answers Only

`D`

Show Worked Solution
`4p` `= 5t + 2q^2`
`2q^2` `= 4p-5t`
`q^2` `= (4p-5t)/2`
`q` `= +- sqrt{(4p-5t)/2}`

 
`=>  D`

Filed Under: Formula Rearrange, Formula Rearrange, Formula Rearrange, Formula Rearrange (Std 1), Formula Rearrange (Std 2) Tagged With: Band 5, smc-1200-20-Non-Linear, smc-1201-20-Non-Linear, smc-6236-20-Non-Linear, smc-6511-20-Non-Linear

Algebra, STD2 A1 2004 HSC 11 MC

If  `d = 6t^2`,  what is a possible value of `t` when  `d = 2400`?

  1. `0.05`
  2. `20`
  3. `120`
  4. `400`
Show Answers Only

`B`

Show Worked Solution
`d` `= 6t^2`
`t^2` `= d/6`
`t` `= +- sqrt(d/6)`

 
`text(When)\ \ d = 2400:`

`t= +- sqrt(2400/6)= +- 20`

`=> B`

Filed Under: AM1 - Algebra (Prelim), Formula Rearrange, Formula Rearrange, Formula Rearrange, Formula Rearrange (Std 1), Formula Rearrange (Std 2), Quadratics and Cubics, Substitution and Other Equations, Substitution and Other Equations, Substitution and Other Equations (Std 1), Substitution and Other Equations (Std 2) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-1116-20-Rearrange and Substitute, smc-1200-20-Non-Linear, smc-1201-20-Non-Linear, smc-4386-10-Rearrange equation, smc-4386-15-Substitution, smc-6234-20-Rearrange and Substitute, smc-6236-20-Non-Linear, smc-6508-20-Rearrange and Substitute, smc-6511-20-Non-Linear, smc-789-20-Rearrange and Substitute

Algebra, STD2 A1 2011 HSC 18 MC

Which of the following correctly expresses  `a`  as the subject of  `s= ut+1/2at^2 `?

  1. `a=(2(s-ut))/t^2`
  2. `a=(2s-ut)/t^2`
  3. `a=(1/2(s-ut))/t^2`
  4. `a=(1/2s-ut)/t^2`
Show Answers Only

`A`

Show Worked Solution
`s` `=ut+1/2at^2`
`1/2at^2` `=s-ut`
`at^2` `=2(s-ut)`
`a` `=(2(s-ut))/t^2`

 
`=>A`

Filed Under: Formula Rearrange, Formula Rearrange, Formula Rearrange, Formula Rearrange (Std 1), Formula Rearrange (Std 2), Quadratics and Cubics Tagged With: Band 5, num-title-ct-pathc, num-title-qs-hsc, smc-1200-20-Non-Linear, smc-1201-20-Non-Linear, smc-4386-10-Rearrange equation, smc-6236-20-Non-Linear, smc-6511-20-Non-Linear

Algebra, STD2 A1 2012 HSC 21 MC

Which of the following correctly expresses  `c`  as the subject of  `E = mc^2 + p` ? 

  1. `c = +-sqrt(\ \ (E-p)/m)` 
  2. `c = +-sqrt(E-p)/m` 
  3. `c = +- sqrt(\ \ E/m)-p` 
  4. `c = +- sqrt(\ \ E/m-p)`
Show Answers Only

`A`

Show Worked Solution
`E` `=\ mc^2 + p`
`mc^2` `=\ E-p`
`c^2` `=(E-p)/m`
`:.c` `= +-sqrt((E-p)/m)`

 
`=>  A`

Filed Under: Formula Rearrange, Formula Rearrange, Formula Rearrange, Formula Rearrange (Std 1), Formula Rearrange (Std 2) Tagged With: Band 4, smc-1200-20-Non-Linear, smc-1201-20-Non-Linear, smc-6236-20-Non-Linear, smc-6511-20-Non-Linear

Copyright © 2014–2026 SmarterEd.com.au · Log in