- Differeniate \(y=\dfrac{x}{x^2+1}\) (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
- Hence evaluate \(\displaystyle \int_0^1{\dfrac{1-x^2}{(x^2+1)^2}}\, dx\) (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. \(\dfrac{dy}{dx} = \dfrac{1-x^2}{(x^2+1)^2}\)
b. \(\dfrac{1}{2}\)
a. Using the quotient rule:
\(\dfrac{dy}{dx} = \dfrac{x^2+1-2x^2}{(x^2+1)^2} = \dfrac{1-x^2}{(x^2+1)^2}\)
b. Using part a:
| \(\displaystyle \int_0^1{\dfrac{1-x^2}{(x^2+1)^2}}\, dx\) | \(=\left[\dfrac{x}{x^2+1}\right]_0^1\) | |
| \(=\dfrac{1}{2} -0\) | ||
| \(=\dfrac{1}{2}\) |
Given that `int_0^k ( 2x + 4 )\ dx = 21`, and `k` is a constant, find the value of `k`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`k = 3`
| `int_0^k ( 2x + 4 ) \ dx` | `= 21` |
| `int_0^k ( 2x + 4 ) \ dx` | `= [ x^2 + 4x ]_0^k` |
| `= [(k^2 + 4k ) – 0 ]` | |
| `= k^2 + 4k` |
| `=> k^2 + 4k` | `=21` |
| `k^2+4k-21` | `= 0` |
| `(k-3)(k+7)` | `= 0` |
| `k` | `=3, -7` |
| `k` | `=3\ text(as ) k >0` |
Evaluate `int_(-2)^0 sqrt(2x + 4)\ dx`. (2 marks)
`8/3`
| `int_(-2)^0 (2x + 4)^(1/2)\ dx` | `= [2/3 · 1/2(2x + 4)^(3/2)]_(-2)^0` |
| `= 1/3(4^(3/2) – 0)` | |
| `= 8/3` |
Evaluate `int_0^1 1/(3x + 2)^2\ dx`. (2 marks)
`1/10`
| `int_0^1 1/(3x + 2)^2\ dx` | `= int_0^1 (3x + 2)^(-2)\ dx` |
| `= [-1/3 (3x + 2)^(-1)]_0^1` | |
| `= [-1/3 ⋅ 1/5 – (-1/3 ⋅ 1/2)]` | |
| `= -1/15 + 1/6` | |
| `= 1/10` |
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `y = xe^(3x)`
`text(Using product rule:)`
| `(dy)/(dx)` | `= x · 3e^(3x) + 1 · e^(3x)` |
| `= e^(3x) (1 + 3x)` |
ii. `int_0^2 e^(3x) (3 + 9x)\ dx`
`= 3 int_0^2 e^(3x) (1 + 3x)\ dx`
`= 3 [x e^(3x)]_0^2`
`= 3 (2e^6 – 0)`
`= 6e^6`
Evaluate `int_0^1 (2x + 1)^3\ dx.` (2 marks)
`10`
`int_0^1 (2x + 1)^3\ dx`
`= 1/4 · 1/2 [(2x + 1)^4]_0^1`
`= 1/8 [3^4 – 1^4]`
`= 1/8 xx 80`
`= 10`
Evaluate `int_1^4 8/x^2\ dx`. (3 marks)
`6`
`int_1^4 8/x^2\ dx`
`= 8 int_1^4 x^-2\ dx`
`= 8[-1/x]_1^4`
`= 8[(-1/4) – (-1/1)]`
`= 8(3/4)`
`= 6`
--- 1 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `int 5\ dx= 5x + C`
ii. `int 3/((x – 6)^2)\ dx`
`= 3 int (x – 6)^(-2)\ dx`
`= 3 xx 1/(-1) xx (x – 6)^(-1) + c`
`= (-3)/((x – 6)) + c`
iii. `int_1^4 x^2 + sqrtx\ \ dx`
`= int_1^4 (x^2 + x^(1/2))\ dx`
`= [1/3 x^3 + 1/(3/2) x^(3/2)]_1^4`
`= [(x^3)/3 + 2/3x^(3/2)]_1^4`
`= [((4^3)/3 + 2/3 xx 4^(3/2))\ – (1/3 + 2/3)]`
`= [(64/3 + 16/3) – 3/3]`
`= [80/3 – 3/3]`
`= 77/3`
Given that `int_0^6 ( x + k )\ dx = 30`, and `k` is a constant, find the value of `k`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`k = 2`
| `int_0^6 ( x + k ) \ dx` | `= 30` |
| `int_0^6 ( x + k ) \ dx` | `= [ 1/2\ x^2 + kx ]_0^6` |
| `= [(1/2xx 6^2 + 6 xx k ) – 0 ]` | |
| `= 18 + 6k` |
| `=> 18 + 6k` | `=30` |
| `6k` | `= 12` |
| `:. k` | `= 2` |