SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C4 EO-Bank 11

  1. Differeniate \(y=\dfrac{x}{x^2+1}\)  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

  1. Hence evaluate \(\displaystyle \int_0^1{\dfrac{1-x^2}{(x^2+1)^2}}\, dx\)   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{dy}{dx} = \dfrac{1-x^2}{(x^2+1)^2}\)

b.    \(\dfrac{1}{2}\)

Show Worked Solution

a.    Using the quotient rule:

\(\dfrac{dy}{dx} = \dfrac{x^2+1-2x^2}{(x^2+1)^2} = \dfrac{1-x^2}{(x^2+1)^2}\)
 

b.    Using part a: 

 \(\displaystyle \int_0^1{\dfrac{1-x^2}{(x^2+1)^2}}\, dx\) \(=\left[\dfrac{x}{x^2+1}\right]_0^1\)  
  \(=\dfrac{1}{2} -0\)  
  \(=\dfrac{1}{2}\)  

 

Filed Under: Standard Integration (Adv-X) Tagged With: Band 4, eo-unique, smc-1202-20-Definite Integrals, smc-1202-30-Diff then Integrate

Calculus, 2ADV C4 EO-Bank 10

Given that  `int_0^k ( 2x + 4 )\ dx = 21`, and  `k`  is a constant, find the value of  `k`.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`k = 3`

Show Worked Solution
`int_0^k ( 2x + 4 ) \ dx` `= 21`
`int_0^k ( 2x + 4 ) \ dx` `= [ x^2 + 4x ]_0^k`
  `= [(k^2 + 4k ) – 0 ]`
  `= k^2 + 4k`

 

`=> k^2 + 4k` `=21`
`k^2+4k-21` `= 0`
`(k-3)(k+7)` `= 0`
`k` `=3, -7`
`k` `=3\ text(as ) k >0`

Filed Under: Standard Integration (Adv-X) Tagged With: Band 4, eo-unique, smc-1202-20-Definite Integrals

Calculus, 2ADV C4 2021 HSC 15

Evaluate  `int_(-2)^0 sqrt(2x + 4)\ dx`.  (2 marks)

Show Answers Only

`8/3`

Show Worked Solution
`int_(-2)^0 (2x + 4)^(1/2)\ dx` `= [2/3 · 1/2(2x + 4)^(3/2)]_(-2)^0`
  `= 1/3(4^(3/2) – 0)`
  `= 8/3`

Filed Under: Standard Integration Tagged With: Band 4, smc-1202-20-Definite Integrals

Calculus, 2ADV C4 2019 HSC 11e

Evaluate  `int_0^1 1/(3x + 2)^2\ dx`.  (2 marks)

Show Answers Only

`1/10`

Show Worked Solution
`int_0^1 1/(3x + 2)^2\ dx` `= int_0^1 (3x + 2)^(-2)\ dx`
  `= [-1/3 (3x + 2)^(-1)]_0^1`
  `= [-1/3 ⋅ 1/5 – (-1/3 ⋅ 1/2)]`
  `= -1/15 + 1/6`
  `= 1/10`

Filed Under: Standard Integration Tagged With: Band 4, smc-1202-20-Definite Integrals

Calculus, 2ADV C4 2016 HSC 12d

  1. Differentiate  `y = xe^(3x)`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Hence find the exact value of  `int_0^2 e^(3x) (3 + 9x)\ dx`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `e^(3x) (1 + 3x)`
  2. `6e^6`
Show Worked Solution

i.  `y = xe^(3x)`

`text(Using product rule:)`

`(dy)/(dx)` `= x · 3e^(3x) + 1 · e^(3x)`
  `= e^(3x) (1 + 3x)`

 

ii.  `int_0^2 e^(3x) (3 + 9x)\ dx`

`= 3 int_0^2 e^(3x) (1 + 3x)\ dx`

`= 3 [x e^(3x)]_0^2`

`= 3 (2e^6 – 0)`

`= 6e^6`

Filed Under: Exponential Calculus, Exponential Calculus (Y12), Integrals, L&E Integration, Logs and Exponentials - Differentiation Tagged With: Band 3, Band 4, smc-1202-20-Definite Integrals, smc-1203-50-Diff then Integrate, smc-965-10-Differentiation (base e), smc-965-40-Definite Integrals, smc-965-60-Diff then integrate

Calculus, 2ADV C4 2016 HSC 11d

Evaluate  `int_0^1 (2x + 1)^3\ dx.`  (2 marks)

Show Answers Only

`10`

Show Worked Solution

`int_0^1 (2x + 1)^3\ dx`

`= 1/4 · 1/2 [(2x + 1)^4]_0^1`

`= 1/8 [3^4 – 1^4]`

`= 1/8 xx 80`

`= 10`

Filed Under: Integrals, Standard Integration Tagged With: Band 3, smc-1202-20-Definite Integrals

Calculus, 2ADV C4 2007 HSC 2bii

Evaluate  `int_1^4 8/x^2\ dx`.  (3 marks)

Show Answers Only

`6`

Show Worked Solution

`int_1^4 8/x^2\ dx`

`= 8 int_1^4 x^-2\ dx` 

`= 8[-1/x]_1^4`

`= 8[(-1/4) – (-1/1)]`

`= 8(3/4)`

`= 6`

Filed Under: Integrals, Standard Integration Tagged With: Band 3, Band 4, smc-1202-20-Definite Integrals

Calculus, 2ADV C4 2009 HSC 2b

  1. Find  `int 5\ dx`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Find  `int 3/((x - 6)^2)\ dx`.    (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Evaluate  `int_1^4 x^2 + sqrtx\ dx`.   (3 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `5x + C`
  2. `(-3)/((x – 6)) + C`
  3. `77/3`
Show Worked Solution

i.  `int 5\ dx= 5x + C`

 

ii.  `int 3/((x – 6)^2)\ dx`

`= 3 int (x – 6)^(-2)\ dx`

`= 3 xx 1/(-1) xx (x – 6)^(-1) + c`

`= (-3)/((x – 6)) + c`

 

iii.  `int_1^4 x^2 + sqrtx\ \ dx`

`= int_1^4 (x^2 + x^(1/2))\ dx`

`= [1/3 x^3 + 1/(3/2) x^(3/2)]_1^4`

`= [(x^3)/3 + 2/3x^(3/2)]_1^4`

`= [((4^3)/3 + 2/3 xx 4^(3/2))\ – (1/3 + 2/3)]`

`= [(64/3 + 16/3) – 3/3]`

`= [80/3 – 3/3]`

`= 77/3`

Filed Under: Integrals, Standard Integration Tagged With: Band 2, Band 3, Band 4, smc-1202-10-Indefinite Integrals, smc-1202-20-Definite Integrals

Calculus, 2ADV C4 2010 HSC 2e

Given that  `int_0^6 ( x + k )\ dx = 30`, and  `k`  is a constant, find the value of  `k`.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`k = 2`

Show Worked Solution
`int_0^6 ( x + k ) \ dx` `= 30`
`int_0^6 ( x + k ) \ dx` `= [ 1/2\ x^2 + kx ]_0^6`
  `= [(1/2xx 6^2 + 6 xx k ) – 0 ]`
  `= 18 + 6k`

 

`=> 18 + 6k` `=30`
`6k` `= 12`
`:.  k` `= 2`

Filed Under: Integrals, Standard Integration Tagged With: Band 4, smc-1202-20-Definite Integrals

Copyright © 2014–2025 SmarterEd.com.au · Log in