SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C4 2011 HSC 4d v1

  1. Differentiate  `y=sqrt(16 -x^2)`  with respect to  `x`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, find  `int (8x)/sqrt(16 -x^2)\ dx`.    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `- x/sqrt(16\ -x^2)`
  2. `-8 sqrt(16\ -x^2) + C`
Show Worked Solution
IMPORTANT: Some students might find calculations easier by rewriting the equation as `y=(16-x^2)^(1/2)`.
a.    `y` `= sqrt(16 -x^2)`
    `= (16 -x^2)^(1/2)`

 

`dy/dx` `=1/2 xx (16 -x^2)^(-1/2) xx d/dx (16 -x^2)`
  `= 1/2 xx (16 -x^2)^(-1/2) xx -2x`
  `= – x/sqrt(16 -x^2)`

 

b.    `int (8x)/sqrt(16 – x^2)\ dx` `= -8 int (-x)/sqrt(16 -x^2)\ dx`
    `= -8 (sqrt(16 -x^2)) + C`
    `= -8 sqrt(16 -x^2) + C`

Filed Under: Standard Integration (Adv-X) Tagged With: Band 4, Band 5, eo-derivative (HSC), smc-1202-10-Indefinite Integrals, smc-1202-30-Diff then Integrate

Calculus, 2ADV C4 EO-Bank 11

  1. Differeniate \(y=\dfrac{x}{x^2+1}\)  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

  1. Hence evaluate \(\displaystyle \int_0^1{\dfrac{1-x^2}{(x^2+1)^2}}\, dx\)   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{dy}{dx} = \dfrac{1-x^2}{(x^2+1)^2}\)

b.    \(\dfrac{1}{2}\)

Show Worked Solution

a.    Using the quotient rule:

\(\dfrac{dy}{dx} = \dfrac{x^2+1-2x^2}{(x^2+1)^2} = \dfrac{1-x^2}{(x^2+1)^2}\)
 

b.    Using part a: 

 \(\displaystyle \int_0^1{\dfrac{1-x^2}{(x^2+1)^2}}\, dx\) \(=\left[\dfrac{x}{x^2+1}\right]_0^1\)  
  \(=\dfrac{1}{2} -0\)  
  \(=\dfrac{1}{2}\)  

 

Filed Under: Standard Integration (Adv-X) Tagged With: Band 4, eo-unique, smc-1202-20-Definite Integrals, smc-1202-30-Diff then Integrate

Calculus, 2ADV C4 2022 HSC 18

  1. Differentiate  `y=(x^(2)+1)^(4)`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, find `int x(x^(2)+1)^(3)dx`.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  `dy/dx=8x(x^2+1)^3`
  2.  `1/8(x^2+1)^4+C`
Show Worked Solution

a.   `y=(x^2+1)^4`

`text{Using chain rule:}`

`dy/dx` `=4 xx 2x(x^2+1)^3`  
  `=8x(x^2+1)^3`  

 

b.    `intx(x^2+1)^3\ dx` `=1/8 int8x(x^2+1)^3\ dx`
    `=1/8(x^2+1)^4+C`

Filed Under: Standard Integration Tagged With: Band 3, Band 4, smc-1202-30-Diff then Integrate

Calculus, 2ADV C4 2011 HSC 4d

  1. Differentiate  `y=sqrt(9 - x^2)`  with respect to  `x`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, find  `int (6x)/sqrt(9 - x^2)\ dx`.    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `- x/sqrt(9\ – x^2)`
  2. `-6 sqrt(9\ – x^2) + C`
Show Worked Solution
IMPORTANT: Some students might find calculations easier by rewriting the equation as `y=(9-x^2)^(1/2)`.
i.    `y` `= sqrt(9 – x^2)`
    `= (9 – x^2)^(1/2)`

 

`dy/dx` `=1/2 xx (9 – x^2)^(-1/2) xx d/dx (9 – x^2)`
  `= 1/2 xx (9 – x^2)^(-1/2) xx -2x`
  `= – x/sqrt(9 – x^2)`

 

ii.    `int (6x)/sqrt(9 – x^2)\ dx` `= -6 int (-x)/sqrt(9 – x^2)\ dx`
    `= -6 (sqrt(9 – x^2)) + C`
    `= -6 sqrt(9 – x^2) + C`

Filed Under: Integrals, Standard / 1st Principles, Standard Integration Tagged With: Band 4, Band 5, smc-1202-10-Indefinite Integrals, smc-1202-30-Diff then Integrate

Copyright © 2014–2025 SmarterEd.com.au · Log in