Explain why there is no integer \(n\) such that \((n+1)^{41}-79 n^{40}=2\). (2 marks) --- 7 WORK AREA LINES (style=lined) --- \(\text{Show}\ \ \nexists \, n \in \mathbb{Z}: \ (n+1)^{41}-79 n^{40}=2\) \(\text {If \(n\) is even:}\) \(\text{LHS}=(\text{odd})^{41}-79(\text{even})^{40}=\text {odd}-\text {even}=\text {odd} \neq 2\) \(\text {If \(n\) is odd:}\) \(\text {LHS }=(\text {even})^{41}-79(\text {odd})^{40}=\text {even}- \text {odd}=\text {odd} \neq 2\) \(\therefore\ \text {By contradiction}\) \(\nexists \, n \in \mathbb{Z}: \ (n+1)^{41}-79 n^{40}=2\) \(\text{Show}\ \ \nexists \, n \in \mathbb{Z}: \ (n+1)^{41}-79 n^{40}=2\) \(\text {If \(n\) is even:}\) \(\text{LHS}=(\text{odd})^{41}-79(\text{even})^{40}=\text {odd}-\text {even}=\text {odd} \neq 2\) \(\text {If \(n\) is odd:}\) \(\text {LHS }=(\text {even})^{41}-79(\text {odd})^{40}=\text {even}- \text {odd}=\text {odd} \neq 2\) \(\therefore\ \text {By contradiction}\) \(\nexists \, n \in \mathbb{Z}: \ (n+1)^{41}-79 n^{40}=2\)
Proof, EXT2 P1 2024 HSC 12d
Explain why there is no integer \(n\) such that \((n+1)^{41}-79 n^{40}=2\). (2 marks) --- 7 WORK AREA LINES (style=lined) ---