Consider the equation
\(z^n \cos\left[n \theta\right]+z^{n-1} \cos \left[(n-1) \theta\right]+z^{n-2} \cos \left[(n-2) \theta\right]+\cdots+z\, \cos\left[\theta\right]=1\)
where \(z \in \mathbb{C} , \theta \in \mathbb{R} \), and \(n\) is a positive integer.
Using a proof by contradiction and the triangle inequality, or otherwise, prove that all the solutions to the equation lie outside the circle \(\abs{z}=\dfrac{1}{2}\) on the complex plane. (4 marks)
--- 14 WORK AREA LINES (style=lined) ---