The complex number `z` satisfies `|z-(4)/(z)|=2`.
Using the triangle inequality, or otherwise, show that `|z| <= sqrt5+1`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
The complex number `z` satisfies `|z-(4)/(z)|=2`.
Using the triangle inequality, or otherwise, show that `|z| <= sqrt5+1`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions)}`
`text{Triangle Inequality:}\ \ absx+absy>=abs(x+y)`
`absz` | `<=abs(z-z/4)+abs(4/z)` | |
`absz` | `<=2+4/absz\ \ \ (text{using}\ |z-(4)/(z)|=2)` | |
`absz^2` | `<=2absz+4` | |
`absz^2-2absz-4` | `<=0` | |
`absz` | `<=(2+sqrt(2^2+4xx4))/2\ \ \ (absz>=0)` | |
`absz` | `<=(2+sqrt20)/2` | |
`absz` | `<=1+sqrt5\ \ text{… as required}` |
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
`|x| + |y| + |z|` | ` = |x_underset~i| + |y_underset~j| + |z_underset~k|` |
`≥ |x_underset~i + y_underset~j| + |z_underset~k|` | |
`≥ |x_underset~i + y_underset~j + z_underset~k|` | |
`≥ 1\ \ (|overset->{OP}| = | x_underset~i + y_underset~j + z_underset~k | = 1)` |
ii. `text{Using the dot product:}`
`underset~a * underset~b = a_1 b_1 + a_2 b_2 + a_3 b_3`
`underset~a * underset~b = |underset~a| |underset~b| cos theta`
`a_1 b_1 + a_2 b_2 + a_3 b_3` | `= sqrt{a_1^2 + a_2^2 + a_3^2} * sqrt{b_1^2 + b_2^2 + b_3^2} * cos theta` |
`|a_1 b_1 + a_2 b_2 + a_3 b_3|` | `= sqrt{a_1^2 + a_2^2 + a_3^2} * sqrt{b_1^2 + b_2^2 + b_3^2} * |cos theta|` |
`text{S} text{ince} \ -1 ≤ cos theta ≤ 1 \ => \ |cos theta| ≤ 1`
`:. \ | a_1 b_1 + a_2 b_2 + a_3 b_3 | ≤ sqrt{a_1^2 + a_2^3 + a_3^2} * sqrt{b_1^2 + b_2^2 + b_3^2}`
iii. `text{Using part (ii) with vectors:}`
`underset~a = ((1),(1),(1)) \ , \ underset~b = (( | x| ),( |y| ),( |z| ))`
`|\ |x| + |y| + |z|\ |` | `≤ sqrt{1^2 + 1^2 + 1^2} * sqrt{ x^2 + y^2 + z^2}` |
`|x| + |y| + |z|` | `≤ sqrt3` |