Given that `f^{\prime}(x)=\frac{\cos (2 x)}{\sin ^3(2 x)}` and `f((pi)/(8))=(3)/(4)`, find `f(x)`. (4 marks)
--- 9 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Given that `f^{\prime}(x)=\frac{\cos (2 x)}{\sin ^3(2 x)}` and `f((pi)/(8))=(3)/(4)`, find `f(x)`. (4 marks)
--- 9 WORK AREA LINES (style=lined) ---
`f(x)=\frac{-1}{4 \sin ^2(2 x)}+\frac{5}{4}=-\frac{1}{4} \text{cosec}^2(2 x)+\frac{5}{4}`
`text{Let}\ \ u=sin(2x)\ \ =>\ \ {du}/{dx}=2cos(2x)`
`\int \frac{\cos (2 x)}{\sin ^3(2 x)} d x` | `=\frac{1}{2} \int \frac{d u}{u^3}` | |
`= -\frac{1}{4} u^{-2}+c` | ||
`=-\frac{1}{4} \ xx \frac{1}{\sin ^2(2 x)}+c` |
`text{When}\ \ x = pi/8:`
`-\frac{1}{4} \cdot \frac{1}{(\frac{1}{sqrt{2}})^2}+c` | `=\frac{3}{4}` | |
`-\frac{1}{4} \cdot 2+c` | `=\frac{3}{4}` | |
`\Rightarrow c` | `=\frac{3}{4}+\frac{2}{4}=5/4` |
`:. \ f(x)=\frac{-1}{4 \sin ^2(2 x)}+\frac{5}{4}=-\frac{1}{4} \text{cosec}^2(2 x)+\frac{5}{4}`
With a suitable substitution `int_(pi/4)^(pi/3) (sec^2(x))/(sec^2(x) - 3 tan(x) + 1)\ dx` can be expressed as
`C`
`text(Let)\ \ u = tan(x)`
`(du)/(dx) = sec^2 (x) \ => \ du = sec^2(x)\ dx`
`text(When)\ ` | `x = pi/3,\ u = sqrt3` |
`x = pi/4,\ u = 1` |
`int_(pi/4)^(pi/3) (sec^2(x))/(sec^2(x) – 3 tan(x) + 1)\ dx` |
`= int_1^(sqrt3)\ 1/(u^2 + 1 – 3u + 1)\ du` |
`= int_1^(sqrt3) 1/(u^2 – 3u + 2)\ du` | |
`= int_1^(sqrt3) 1/((u – 2)(u – 1))\ du` | |
`= int_1^(sqrt3) 1/(u – 2) – 1/(u – 1)\ du` |
`=>C`
Using a suitable substitution, `int_0^(pi/3) sin^3 (x) cos^4 (x)\ dx` can be expressed in terms of `u` as
A. `int_0^(pi/3) (u^6 - u^4)\ du`
B. `int_1^(1/2) (u^6 - u^4)\ du`
C. `int_(1/2)^1 (u^6 - u^4)\ du`
D. `int_0^(sqrt3/2) (u^6 - u^4)\ du`
E. `int_0^(sqrt3/2) (u^4 - u^6)\ du`
`B`
`text(Let)\ \ u = cos(x)`
`(du)/(dx) = -sin(x)\ \ =>\ \ du=-sin(x)\ dx`
`sin^2(x)` | `= 1 – cos^2(x)` |
`= 1 – u^2` |
`text(When)\ \ x = 0, \ u = 1`
`text(When)\ \ x = pi/3, \ u = 1/2`
`int_0^(pi/3) sin^3 (x) cos^4 (x)\ dx`
`=-int_1^(1/2) (1 – u^2)u^4\ du`
`= int_1^(1/2) (u^6 – u^4)\ du`
`=> B`
Using a suitable substitution, the definite integral `int_0^(pi/24)tan(2x)sec^2(2x)\ dx` is equivalent to
A. `1/2int_0^(pi/24)(u)\ du`
B. `2int_0^(pi/24)(u)\ du`
C. `int_0^(2 - sqrt3)(u)\ du`
D. `1/2int_0^(2 - sqrt3)(u)\ du`
E. `2int_0^(2 - sqrt3)(u)\ du`
`D`
`text(Let)\ \ u = tan(2x)`
`(du)/dx = 2 sec^2(2x)\ \ =>\ \ 1/2 du = sec^2(2x)\ dx`
`text(When)\ \ x=pi/24\ \ =>\ \ u=tan(pi/12)=2-sqrt3\ \ text{(by CAS)}`
`text(When)\ \ x=0\ \ =>\ \ u=0`
`:. int_0^(pi/24)tan(2x)sec^2(2x)\ dx`
`= 1/2int_0^(2 – sqrt3)(u)\ du`
`=> D`
`int_(pi/4)^(pi/3) (sin^3(x) cos^2(x))\ dx` is equivalent to
A. `int_(1/2)^(1/sqrt 2) (u^4 - u^2)\ du` where `u = cos(x)`
B. `-int_(1/sqrt 2)^(1/2) (u^2 - u^4)\ du` where `u = cos(x)`
C. `-int_(pi/4)^(pi/3) (u^2 - u^4)\ du` where `u = sin(x)`
D. `int_(pi/4)^(pi/3) (u^2 - u^4)\ du` where `u = sin(x)`
E. `- int_(1/sqrt 2)^(1/2) (u^2 - u^4)\ du` where `u = sin(x)`
`B`
`text(Let)\ \ u = cos (x)`
`sin^3(x)` | `= sin(x) ⋅ sin^2(x)` |
`= sin(x) (1 – cos^2(x))` |
`(du)/dx = – sin(x)\ \ =>\ \ du = – sin(x)\ dx`
`u(pi/3) = 1/2,\ \ u(pi/4) = 1/sqrt 2`
`:. int_(pi/4)^(pi/3) sin(x)(1-cos^2(x)) cos^2(x)\ dx`
`=int_(1/sqrt 2)^(1/2) -(1 – u^2)u^2\ du`
`= -int_(1/sqrt 2)^(1/2) (u^2 – u^4)\ du`
`=> B`
`int_(pi/36)^(pi/12) 96 cos (3x) sin (3x) cos^2 (6x)\ dx` in terms of `u` only. (3 marks)
a. `96 cos (3x) sin(3x)`
`= 48 (2 cos(3x) sin(3x))`
`= 48 sin (6x)`
`:. a = 48`
b. `int_(pi/36)^(pi/12) 96 cos (3x) sin (3x) cos^2 (6x)\ dx`
`= int_(pi/36)^(pi/12) 48 sin (6x) cos^2 (6x)\ dx`
`u` | `= cos (6x)` |
`(du)/(dx)` | `= -6 sin (6x)\ \ =>\ \ du = -6 sin(6x)\ dx` |
`u(pi/12)` | `= cos (pi/2) = 0` |
`u(pi/36)` | `= cos (pi/6) = sqrt 3/2` |
`:. int_(pi/36)^(pi/12) 48 sin (6x) cos^2 (6x)\ dx`
`= int_(sqrt 3/2)^0 – 8u^2\ du`
c. `:. int_(pi/36)^(pi/12) 96 cos (3x) sin (3x) cos^2 (6x)\ dx`
`= -8 [u^3/3]_(sqrt 3/2)^0` |
`= -8 (0 – (sqrt 3/2)^3/3)` |
`= 8/3 xx (3sqrt3)/8` |
`= sqrt 3` |
Let `f(x) = 1/(arcsin(x))`.
Find `fprime(x)` and state the largest set of values of `x` for which `fprime(x)` is defined. (3 marks)
`x ∈ (−1, 1) \\ {0}`
`u = sin^(−1)(x), \ f(u(x)) = 1/u`
`fprime(u(x))` | `= −u^(−2)` |
`uprime(x)` | `= 1/sqrt(1 – x^2)` |
`fprime(x)` | `= (−u^(−2))/sqrt(1 – x^2)` |
`fprime(x)` | `= (−1)/(arcsin^2(x)sqrt(1 – x^2))` |
`text(Domain:)\ sin^(−1)(x)\ \ x ∈[−1,1]`
`sin^(−1)(x) != 0 \ \ => \ \ x != 0`
`=> x ∈ [−1, 1] \\ {0}`
`fprime(x)\ text(doesn’t exist at end points)`
`:. x ∈ (−1, 1) \\ {0}`
Using a suitable substitution, `int_0^(pi/6) tan^2 (x) sec^2(x)\ dx` can be expressed as
A. `int_0^(1/sqrt 3) (u^4 + u^2) du`
B. `int_1^(2/sqrt 3) (u^4 + u^2) du`
C. `int_0^(1/(sqrt 3)) u\ du`
D. `int_0^(pi/6) u^2\ du`
E. `int_0^(1/sqrt 3) u^2\ du`
`E`
`text(Let)\ \ u` | `= tan(x),` |
`(du)/(dx)` | `= sec^2 (x)\ \ =>\ du = sec^2(x)\ dx` |
`u(0)` | `= tan(0) = 0` |
`u (pi/6)` | `= tan (pi/6) = 1/sqrt 3` |
`int_0^(pi/6) tan^2 (x)\ sec^2 (x)\ dx = int_0^(1/sqrt 3) u^2 du`
`=> E`