Find `int(3x^(2)+4x+12)/(x(x^(2)+4))\ dx`. (4 marks)
--- 9 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find `int(3x^(2)+4x+12)/(x(x^(2)+4))\ dx`. (4 marks)
--- 9 WORK AREA LINES (style=lined) ---
`3ln |x|+2tan^(-1)((x)/(2))+c`
`text{Using partial fractions:}`
`(3x^(2)+4x+12)/(x(x^(2)+4))` | `-=(A)/(x)+(Bx+C)/(x^(2)+4)` | |
`3x^(2)+4x+12` | `=A(x^(2)+4)+x(Bx+C)` | |
`3x^(2)+4x+12` | `=(A+B)x^(2)+Cx+4A` |
`4A=12\ \ =>\ \ A=3`
`C=4`
`A+B=3\ \ =>\ \ B=0`
`:.\int(3x^(2)+4x+12)/(x(x^(2)+4))\ dx` | `=int(3)/(x)+(4)/(4+x^(2))\ dx` | |
`=3ln |x|+2tan^(-1)((x)/(2))+c` |
Using partial fractions, evaluate `int_(2)^(n)(4+x)/((1-x)(4+x^(2))) dx`, giving your answer in the form `(1)/(2)ln((f(n))/(8(n-1)^(2)))`, where `f(n)` is a function of `n`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`1/2ln((4+n^2)/(8(1-n^2)))`
`(4+x)/((1-x)(4+x^(2)))` | `≡ A/(1-x) + (Bx+C)/(4+x^2)` | |
`4+x` | `≡A(4+x^2)+(Bx+C)(1-x)` |
`text{If}\ \ x=1, \ 5=5A\ \ =>\ \ A=1`
`(4+x)` | `≡ 4+x^2+Bx-Bx^2+C-Cx` | |
`4+x` | `≡ (1-B)x^2+(B-C)x+C+4` |
`=>\ B=1, \ C=0`
`:.int_(2)^(n)(4+x)/((1-x)(4+x^(2))) dx`
`=int_2^n 1/(1-x) +x/(4+x^2)\ dx`
`=[-ln abs(1-x)+1/2ln(4+x^2)]_2^n`
`=-ln abs(1-n)+1/2ln(4+n^2)+lnabs(1-2)-1/2ln(4+2^2)`
`=-1/2ln(1-n)^2+1/2ln(4+n^2)-1/2ln(8)`
`=1/2ln((4+n^2)/(8(1-n^2)))`
Express `{3x^2-5}/{(x-2)(x^2 + x + 1)}` as a sum of partial fractions over `RR`. (3 marks)
`{3x^2-5}/{(x-2)(x^2 + x + 1)} = {1}/{x-2} + {2x + 3}/{x^2 + x + 1}`
`{3x^2-5}/{(x-2)(x^2 + x + 1)} = {A}/{(x-2)} + {B x + C}/{(x^2 + x + 1)}`
`A (x^2 + x + 1) + (Bx + C)(x-2) ≡ 3x^2-5`
`text{If} \ \ x = 2,`
`7A = 7 \ => \ A = 1`
`text{If} \ \ x = 0,`
`1-2C=-5 \ => \ C = 3`
`text(Equating coefficients:)`
`x^2 + x + 1 + Bx^2-2Bx + 3x -6 \ ≡ \ 3x^2 -5`
`(B + 1) x^2 + (4 -2B) x -5 \ ≡ \ 3x^2-5`
`=> B = 2`
`:. \ {3x^2-5}/{(x-2)(x^2 + x + 1)} = {1}/{x-2} + {2x + 3}/{x^2 + x + 1}`
--- 6 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `(5x^2-3x+13)/((x-1)(x^2+4)) ≡ (a(x^2+4) + (bx-1)(x-1))/((x-1)(x^2+4))`
`text(Equating numerators:)`
`5x^2-3x+13` | `=ax^2+4a+bx^2-bx-x+1` | |
`=(a+b)x^2+(-b-1)x+4a+1` |
`-b-1` | `=-3\ \ =>\ \ b=2` | |
`a` | `=3` |
ii. | `int (5x^2-3x+13)/((x-1)(x^2+4)) \ dx` | `=int 3/(x-1)\ dx-int (2x)/(x^2+4)\ dx-int 1/(4+x^2)\ dx` |
`=3 log_e|x-1|-log_e |x^2+4|-1/2 tan^(-1)(x/2)+C` |
Find `int(3x^2 + 8)/(x(x^2 +4))\ dx`. (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
` 2log_e x + 1/2log_e(x^2 + 4) + c`
`(3x^2 + 8)/(x(x^2 +4))` | `= a/x + (bx + c)/(x^2 + 4)` |
`3x^2 +8` | `=ax^2 + 4a+ bx^2 + cx` |
`=(a+b)x^2+cx+4a` | |
`a + b = 3, \ c = 0, \ 4a = 8`
`:.a = 2, b = 1, c = 0`
`int(3x^2 + 8)/(x(x^2 +4))\ dx` | `= int2/x\ dx + int x/(x^2 + 4)\ dx` |
`= 2log_e x + 1/2log_e(x^2 + 4) + c` |
Find `int_1^(sqrt3) 1/(x(1 + x^2))\ dx`, expressing your answer in the form `log_e(sqrt(a/b))` (4 marks)
`ln(sqrt(3/2))`
`text(Using partial fractions:)`
`int_1^(sqrt3) A/x + (Bx + C)/(1 + x^2)\ dx`
MARKER’S COMMENT: A “large number” of students did not use partial fractions here.
`A(1 + x^2) + (Bx + C)x = 1`
`(A+B)x^2 + Cx+(A+C)=1`
`Cx=0\ \ =>\ C=0`
`A+C=1\ \ =>\ A=1`
`A+B=0\ \ =>\ B=-1`
`:. int_1^(sqrt3) 1/(x(1 + x^2))\ dx`
`= int_1^(sqrt3) 1/x\ dx + int_1^(sqrt3) (−x)/(1 + x^2)\ dx` | |
`= [ln|x|]_1^(sqrt3)-1/2 int_1^(sqrt3) (2x)/(1 + x^2)\ dx` | |
`= ln(sqrt3)-ln(1)-1/2[ln(1 + x^2)]_1^(sqrt3)` | |
`= ln(sqrt3)-1/2 ln(4) + 1/2 ln(2)` | |
`= ln(sqrt3)-ln2 + ln(sqrt2)` | |
`= ln((sqrt3 xx sqrt2)/2)` | |
`= ln((sqrt6)/2)` | |
`= ln(sqrt(3/2))` |
Find `int 1/(x(x^2 + 1))\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`ln\ |\ x\ | + 1/2ln\ (x^2 + 1) + c`
`text(Using partial fractions:)`
`1/(x(x^2 + 1)) =` | `a/x + (bx + c)/(x^2 + 1)` |
`1=` | `a(x^2+1)+x(bx+c)` |
`1=` | `(a + b)x^2 + cx + a` |
`:.c = 0, \ \ a = 1,\ \ b = -1` |
`:.int 1/(x(x^2 + 1))\ dx` | `=int(1/x − x/(x^2 + 1))\ dx` |
`=ln\ |\ x\ |-1/2ln\ (x^2 + 1) + c` |