Find `int(3x^(2)+4x+12)/(x(x^(2)+4))\ dx`. (4 marks)
--- 9 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find `int(3x^(2)+4x+12)/(x(x^(2)+4))\ dx`. (4 marks)
--- 9 WORK AREA LINES (style=lined) ---
`3ln |x|+2tan^(-1)((x)/(2))+c`
`text{Using partial fractions:}`
`(3x^(2)+4x+12)/(x(x^(2)+4))` | `-=(A)/(x)+(Bx+C)/(x^(2)+4)` | |
`3x^(2)+4x+12` | `=A(x^(2)+4)+x(Bx+C)` | |
`3x^(2)+4x+12` | `=(A+B)x^(2)+Cx+4A` |
`4A=12\ \ =>\ \ A=3`
`C=4`
`A+B=3\ \ =>\ \ B=0`
`:.\int(3x^(2)+4x+12)/(x(x^(2)+4))\ dx` | `=int(3)/(x)+(4)/(4+x^(2))\ dx` | |
`=3ln |x|+2tan^(-1)((x)/(2))+c` |
Using partial fractions, evaluate `int_(2)^(n)(4+x)/((1-x)(4+x^(2))) dx`, giving your answer in the form `(1)/(2)ln((f(n))/(8(n-1)^(2)))`, where `f(n)` is a function of `n`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`1/2ln((4+n^2)/(8(1-n^2)))`
`(4+x)/((1-x)(4+x^(2)))` | `≡ A/(1-x) + (Bx+C)/(4+x^2)` | |
`4+x` | `≡A(4+x^2)+(Bx+C)(1-x)` |
`text{If}\ \ x=1, \ 5=5A\ \ =>\ \ A=1`
`(4+x)` | `≡ 4+x^2+Bx-Bx^2+C-Cx` | |
`4+x` | `≡ (1-B)x^2+(B-C)x+C+4` |
`=>\ B=1, \ C=0`
`:.int_(2)^(n)(4+x)/((1-x)(4+x^(2))) dx`
`=int_2^n 1/(1-x) +x/(4+x^2)\ dx`
`=[-ln abs(1-x)+1/2ln(4+x^2)]_2^n`
`=-ln abs(1-n)+1/2ln(4+n^2)+lnabs(1-2)-1/2ln(4+2^2)`
`=-1/2ln(1-n)^2+1/2ln(4+n^2)-1/2ln(8)`
`=1/2ln((4+n^2)/(8(1-n^2)))`
Evaluate `int_0^1 (2x + 1)/(x^2 + 1)\ dx`. (3 marks)
`log_e 2 + pi/4`
`int_0^1 (2x + 1)/(x^2 + 1)\ dx` | `= int_0^1 (2x)/(x^2 + 1)\ dx + int_0^1 1/(x^2 + 1)\ dx` |
`= [log_e(x^2 + 1)]_0^1 + [tan^(-1)(x)]_0^1` | |
`= log_e 2-log_e 1 + tan^(-1)(1)-tan^(-1)(0)` | |
`= log_e 2 + pi/4` |
Express `{3x^2-5}/{(x-2)(x^2 + x + 1)}` as a sum of partial fractions over `RR`. (3 marks)
`{3x^2-5}/{(x-2)(x^2 + x + 1)} = {1}/{x-2} + {2x + 3}/{x^2 + x + 1}`
`{3x^2-5}/{(x-2)(x^2 + x + 1)} = {A}/{(x-2)} + {B x + C}/{(x^2 + x + 1)}`
`A (x^2 + x + 1) + (Bx + C)(x-2) ≡ 3x^2-5`
`text{If} \ \ x = 2,`
`7A = 7 \ => \ A = 1`
`text{If} \ \ x = 0,`
`1-2C=-5 \ => \ C = 3`
`text(Equating coefficients:)`
`x^2 + x + 1 + Bx^2-2Bx + 3x -6 \ ≡ \ 3x^2 -5`
`(B + 1) x^2 + (4 -2B) x -5 \ ≡ \ 3x^2-5`
`=> B = 2`
`:. \ {3x^2-5}/{(x-2)(x^2 + x + 1)} = {1}/{x-2} + {2x + 3}/{x^2 + x + 1}`
Using partial fractions, show that
`int_0^(1/2) 8/(1-x^4)\ dx = log_e 9-4 tan^(−1) (1/2)` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`text(Using partial fractions:)`
`8/(1-x^4) = A/(1-x^2) + B/(1 + x^2)`
`A(1 + x^2) + B(1-x^2)` | `= 8` |
`A + B + (A-B)x^2` | `= 8` |
`A + B` | ` = 8\ \ …\ (1)` |
`A-B` | ` = 0\ \ …\ (2)` |
`A = 4, \ B = 4`
`4/(1-x^2) = A/(1-x) + B/(1 + x)`
`A(1 + x) + B(1-x)` | `= 4` |
`A + B + (A-B)x` | `= 4` |
`A + B` | `= 4\ \ …\ (1)` |
`A-B` | `= 0\ \ …\ (2)` |
`A = 2, B = 2`
`int_0^(1/2) 8/(1-x^4)\ dx` | `= int_0^(1/2) 2/(1-x) + 2/(1 + x) + 4/(1 + x^2)\ dx` |
`= [−2ln |1-x| + 2ln |1 + x| + 4tan^(−1)x]_0^(1/2)` | |
`= [2ln |(1 + x)/(1-x)| + 4tan^(−1)x]_0^(1/2)` | |
`= 2ln |(1 1/2)/(1/2)| + 4tan^(−1)(1/2)-(2ln1 + 4tan^(−1) 0)` | |
`= 2ln3 + 4tan^(−1)(1/2)` | |
`= ln9 + 4tan^(−1)(1/2)` |
Find an antiderivative of `(1 + x)/(9-x^2),\ \ x in R \ text(\{– 3, 3}).` (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
`-1/3ln((3-x)^2(|3 + x|))`
`int (1 + x)/(9-x^2)\ dx` | `= int (1-x)/((3-x)(3 + x))\ dx` |
`= int A/(3-x) + B/(3 + x)\ dx` |
`text(Using partial fractions:)`
`A(3 + x) + B(3-x) = 1 + x`
`text(When)\ \ x=3, \ 6A=4\ \ =>\ \ A=2/3`
`text(When)\ \ x=-3, \ 6B=-2\ \ =>\ \ B=-1/3`
`:. int (1 + x)/(9-x^2)\ dx`
`int 2/3 (1/(3-x))-1/3 (1/(3 + x))\ dx`
`= -2/3ln|3-x|-1/3ln|3 + x|,\ \ \ (c=0)`
Find `int(3x^2 + 8)/(x(x^2 +4))\ dx`. (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
` 2log_e x + 1/2log_e(x^2 + 4) + c`
`(3x^2 + 8)/(x(x^2 +4))` | `= a/x + (bx + c)/(x^2 + 4)` |
`3x^2 +8` | `=ax^2 + 4a+ bx^2 + cx` |
`=(a+b)x^2+cx+4a` | |
`a + b = 3, \ c = 0, \ 4a = 8`
`:.a = 2, b = 1, c = 0`
`int(3x^2 + 8)/(x(x^2 +4))\ dx` | `= int2/x\ dx + int x/(x^2 + 4)\ dx` |
`= 2log_e x + 1/2log_e(x^2 + 4) + c` |
Evaluate `int_0^1 (x-5)/(x^2-5x + 6)\ dx.` (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
`ln(9/32)`
`int_0^1 (x-5)/(x^2-5x + 6)\ dx` | `= int_0^1 (x-5)/((x-3)(x-2))\ dx` |
`= int_0^1 A/(x-3) + B/(x-2)\ dx` |
`text(Using partial fractions:)`
`A(x-2) + B(x-3) = x-5`
`text(If)\ \ x = 2,` | `-B` | `= −3` |
`B` | `= 3` | |
`text(If)\ \ x = 3,` | `A` | `=-2` |
`:. int_0^1 (x-5)/(x^2-5x + 6)\ dx`
`= int_0^1 −2/(x-3) + 3/(x-2)\ dx` | |
`= [−2ln|x-3| + 3ln|x-2|]_0^1` | |
`= −2ln(2) + 3ln(1) + 2ln(3)-3ln(2)` | |
`= 2ln(3)-5ln(2)` | |
`= ln(3^2/2^5)` | |
`= ln(9/32)` |
Find `a` given that `int_(-2)^a 8/(16-x^2)\ dx = log_e(6), \ a in (-2, 4)`. (3 marks)
`a = 4/3`
`I` | `= int_(-2)^a 8/((4-x)(4 + x))\ dx` |
`= int_(-2)^a A/(4-x) + B/(4 + x)\ dx` |
`text(Using partial fractions:)`
`A(4 + x) + B(4-x) = 8`
`text(If)\ \ x = 4\ \ =>\ \ 8A=8\ \ =>\ \ A=1`
`text(If)\ \ x = -4\ \ =>\ \ 8B=8\ \ =>\ \ B=1`
`:. I` | `= int_(-2)^a 1/(4-x) + 1/(4 + x)\ dx` |
`ln6` | `= [ln |4 + x|-ln|4-x|]_(-2)^a` |
`= ln|4 + a|-ln|4-a|-(ln|2|-ln|6|)` | |
`= ln ((4 + a)/(4-a))-ln (2/6),\ \ \ (a in (-2, 4))` | |
`= ln ((3(4 + a))/(4-a))` | |
`6` | `= 3((4 + a)/(4-a))` |
`2` | `=(4 + a)/(4-a)` |
`8-2a` | `=4+a` |
`:. a` | `=4/3` |
Find `int_1^(sqrt3) 1/(x(1 + x^2))\ dx`, expressing your answer in the form `log_e(sqrt(a/b))` (4 marks)
`ln(sqrt(3/2))`
`text(Using partial fractions:)`
`int_1^(sqrt3) A/x + (Bx + C)/(1 + x^2)\ dx`
MARKER’S COMMENT: A “large number” of students did not use partial fractions here.
`A(1 + x^2) + (Bx + C)x = 1`
`(A+B)x^2 + Cx+(A+C)=1`
`Cx=0\ \ =>\ C=0`
`A+C=1\ \ =>\ A=1`
`A+B=0\ \ =>\ B=-1`
`:. int_1^(sqrt3) 1/(x(1 + x^2))\ dx`
`= int_1^(sqrt3) 1/x\ dx + int_1^(sqrt3) (−x)/(1 + x^2)\ dx` | |
`= [ln|x|]_1^(sqrt3)-1/2 int_1^(sqrt3) (2x)/(1 + x^2)\ dx` | |
`= ln(sqrt3)-ln(1)-1/2[ln(1 + x^2)]_1^(sqrt3)` | |
`= ln(sqrt3)-1/2 ln(4) + 1/2 ln(2)` | |
`= ln(sqrt3)-ln2 + ln(sqrt2)` | |
`= ln((sqrt3 xx sqrt2)/2)` | |
`= ln((sqrt6)/2)` | |
`= ln(sqrt(3/2))` |
Evaluate `int_2^5 (x-6)/(x^2 + 3x-4)\ dx.` (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`2 ln (3/4)`
`text(Using partial fractions:)`
`(x-6)/(x^2 + 3x-4)` | `=(x-6)/((x+4)(x-1))` |
`= A/(x+4) + B/(x-1)` | |
`:. x-6` | `=A(x-1)+B(x+4)` |
`text(When)\ \ x=1,\ \ 5B=-5\ =>B=-1`
`text(When)\ \ x=-4,\ \ -5A=-10\ =>A=2`
`:. int_2^5 (x-6)/(x^2 + 3x-4)\ dx` | `= int_2^5 2/(x+4)\ dx-int_2^5 (dx)/(x-1)` |
`= [2 ln (x+4)]_2^5 -[ln(x-1)]_2^5` | |
`= 2(ln 9-ln 6)-(ln4-ln1)` | |
`= 2ln(3/2)-ln4` | |
`= 2ln(3/2)-2ln2` | |
`= 2ln(3/4)` |
Find `int 1/(x(x^2 + 1))\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`ln\ |\ x\ | + 1/2ln\ (x^2 + 1) + c`
`text(Using partial fractions:)`
`1/(x(x^2 + 1)) =` | `a/x + (bx + c)/(x^2 + 1)` |
`1=` | `a(x^2+1)+x(bx+c)` |
`1=` | `(a + b)x^2 + cx + a` |
`:.c = 0, \ \ a = 1,\ \ b = -1` |
`:.int 1/(x(x^2 + 1))\ dx` | `=int(1/x − x/(x^2 + 1))\ dx` |
`=ln\ |\ x\ |-1/2ln\ (x^2 + 1) + c` |
Let `I = int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx.`
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Let)\ \ u = 4-x,\ \ du = -dx,\ \ x = 4-u`
`text(When)\ \ x = 1,\ \ u = 3`
`text(When)\ \ x = 3,\ \ u = 1`
`I` | `=int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx` |
`=int_3^1 (cos^2 (pi/8(4-u)))/((4-u)u) (-du)` | |
`=-int_3^1 (cos^2(pi/2-pi/8 u))/((4-u)u)\ du` | |
`=int_1^3 (sin^2(pi/8 u))/(u (4-u))\ du` |
ii. `text{S}text{ince}\ \ int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx = int_1^3 (sin^2(pi/8 x))/(x(4-x))\ dx`
`text(We can add the integrals such that)`
`2I` | `=int_1^3 (cos^2(pi/8 x))/(x(4-x)) dx + int_1^3 (sin^2(pi/8 x))/(x(4-x)) dx` |
`=int_1^3 1/(x(4-x)) dx` |
`text(Using partial fractions:)`
`1/(x(4-x))` | `=A/x+B/(4-x)` |
`1` | `=A(4-x)+Bx` |
`text(When)\ \ x=0,\ \ A=1/4`
`text(When)\ \ x=0,\ \ B=1/4`
`2I` | `=1/4 int_1^3 (1/x + 1/(4-x))\ dx` |
`=1/4 [log_e x-log_e (4-x)]_1^3` | |
`=1/4 [log_e 3-log_e 1-(log_e 1-log_e 3)]` | |
`=1/2 log_e 3` | |
`:.I` | `=1/4 log_e 3` |