SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Complex Numbers, SPEC2 2023 VCAA 2

Let \(w=\text{cis}\left(\dfrac{2 \pi}{7}\right)\).

  1. Verify that \(w\) is a root of  \(z^7-1=0\).   (1 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  1. List the other roots of  \(z^7-1=0\)  in polar form.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  1. On the Argand diagram below, plot and label the points that represent all the roots of  \(z^7-1=0\).   (2 marks)

    --- 0 WORK AREA LINES (style=blank) ---


  1.  i. On the Argand diagram below, sketch the ray that originates at the real root of  \(z^7-1=0\)  and passes through the point represented by \( \text{cis}\left(\dfrac{2 \pi}{7} \right)\).   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

     

  1. ii. Find the equation of this ray in the form \(\text{Arg}\left(z-z_0\right)=\theta\), where \(z_0 \in C\), and \(\theta\) is measured in radians in terms of \(\pi\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Verify that the equation  \(z^7-1=0\)  can be expressed in the form 
  3.     \((z-1)\left(z^6+z^5+z^4+z^3+z^2+z+1\right)=0\).   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  4.   i. Express  \(\text{cis}\left(\dfrac{2 \pi}{7}\right)+\operatorname{cis}\left(\dfrac{12 \pi}{7}\right)\) in the form \(A \cos (B \pi)\), where \(A, B \in R^{+}\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  5. ii. Given that  \(w=\operatorname{cis}\left(\dfrac{2 \pi}{7}\right)\)  satisfies  \((z-1)\left(z^6+z^5+z^4+z^3+z^2+z+1\right)=0\),

use De Moivre's theorem to show that

      1. \(\cos \left(\dfrac{2 \pi}{7}\right)+\cos \left(\dfrac{4 \pi}{7}\right)+\cos \left(\dfrac{6 \pi}{7}\right)=-\dfrac{1}{2}\).   (2 marks)

        --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(w^7-1 =\ \text{cis} \Big{(}\dfrac{2 \pi}{7} \Big{)}^7-1 = \text{cis} \Big{(}\dfrac{14 \pi}{7}\Big{)}-1 = 1-1=0\)

\(\therefore w\ \text{is a root of}\ \ z^7-1=0 \)
 

b.  \(\text{Roots of}\ \ z^7-1=0:\) 

\(\text{cis} (0), \text{cis} \Big{(}\dfrac{2 \pi}{7} \Big{)}, \text{cis} \Big{(}\dfrac{4 \pi}{7} \Big{)}, \text{cis} \Big{(}\dfrac{6 \pi}{7} \Big{)}, \text{cis} \Big{(}\dfrac{8 \pi}{7} \Big{)}, \text{cis} \Big{(}\dfrac{10 \pi}{7} \Big{)}, \text{cis} \Big{(}\dfrac{12 \pi}{7} \Big{)} \)

c.   
          

d.i.   
          

d.ii. \(\text{Base angle (isosceles Δ)}\ = \dfrac{1}{2} \times \Big{(}\pi-\dfrac{2\pi}{7}\Big{)} = \dfrac{5\pi}{14} \)

\(\arg(z-1)=\dfrac{9\pi}{14} \)
 

e.    \((z-1)(z^6+z^5+z^4+z^3+z^2+z+1) \)  
    \(=(z^7+z^6+z^5+z^4+z^3+z^2+z)-(z^6+z^5+z^4+z^3+z^2+z+1) \)  
    \(=z^7-1\)  

 

f.i.   \(\text{cis}\Big{(}\dfrac{2\pi}{7}\Big{)} + \text{cis}\Big{(}\dfrac{12\pi}{7}\Big{)} = \text{cis}\Big{(}\dfrac{2\pi}{7}\Big{)} + \text{cis}\Big{(}-\dfrac{2\pi}{7}\Big{)} =2\cos\Big{(}\dfrac{2\pi}{7}\Big{)}  \)
 

f.ii.  \(z^6+z^5+z^4+z^3+z^2+z+1=0\ \ \text{(using part (e))} \)

\((z^6+z)+(z^4+z^3)+(z^5+z^2)=-1 \)

\(\Bigg{(}\text{cis}\Big{(}\dfrac{12\pi}{7}\Big{)} + \text{cis}\Big{(}\dfrac{2\pi}{7}\Big{)}\Bigg{)} + \Bigg{(}\text{cis}\Big{(}\dfrac{8\pi}{7}\Big{)} + \text{cis}\Big{(}\dfrac{6\pi}{7}\Big{)}\Bigg{)} + \Bigg{(}\text{cis}\Big{(}\dfrac{10\pi}{7}\Big{)} + \text{cis}\Big{(}\dfrac{4\pi}{7}\Big{)}\Bigg{)}=-1\)

\(2\cos \Big{(}\dfrac{2 \pi}{7}\Big{)}+2\cos \Big{(}\dfrac{6 \pi}{7}\Big{)}+2\cos \Big{(}\dfrac{4 \pi}{7}\Big{)}=-1\)

\(\cos \Big{(}\dfrac{2 \pi}{7}\Big{)}+\cos \Big{(}\dfrac{4 \pi}{7}\Big{)}+\cos \Big{(}\dfrac{6 \pi}{7}\Big{)}=-\dfrac{1}{2}\)

Show Worked Solution

a.   \(w^7-1 =\ \text{cis} \Big{(}\dfrac{2 \pi}{7} \Big{)}^7-1 = \text{cis} \Big{(}\dfrac{14 \pi}{7}\Big{)}-1 = 1-1=0\)

\(\therefore w\ \text{is a root of}\ \ z^7-1=0 \)
 

b.  \(\text{Roots of}\ \ z^7-1=0:\) 

\(\text{cis} (0), \text{cis} \Big{(}\dfrac{2 \pi}{7} \Big{)}, \text{cis} \Big{(}\dfrac{4 \pi}{7} \Big{)}, \text{cis} \Big{(}\dfrac{6 \pi}{7} \Big{)}, \text{cis} \Big{(}\dfrac{8 \pi}{7} \Big{)}, \text{cis} \Big{(}\dfrac{10 \pi}{7} \Big{)}, \text{cis} \Big{(}\dfrac{12 \pi}{7} \Big{)} \)

c.   
          

d.i.   
          

d.ii. \(\text{Base angle (isosceles Δ)}\ = \dfrac{1}{2} \times \Big{(}\pi-\dfrac{2\pi}{7}\Big{)} = \dfrac{5\pi}{14} \)

\(\arg(z-1)=\dfrac{9\pi}{14} \)
 

e.    \((z-1)(z^6+z^5+z^4+z^3+z^2+z+1) \)  
    \(=(z^7+z^6+z^5+z^4+z^3+z^2+z)-(z^6+z^5+z^4+z^3+z^2+z+1) \)  
    \(=z^7-1\)  

 

f.i.   \(\text{cis}\Big{(}\dfrac{2\pi}{7}\Big{)} + \text{cis}\Big{(}\dfrac{12\pi}{7}\Big{)} = \text{cis}\Big{(}\dfrac{2\pi}{7}\Big{)} + \text{cis}\Big{(}-\dfrac{2\pi}{7}\Big{)} =2\cos\Big{(}\dfrac{2\pi}{7}\Big{)}  \)
 

f.ii.  \(z^6+z^5+z^4+z^3+z^2+z+1=0\ \ \text{(using part (e))} \)

\((z^6+z)+(z^4+z^3)+(z^5+z^2)=-1 \)

\(\Bigg{(}\text{cis}\Big{(}\dfrac{12\pi}{7}\Big{)} + \text{cis}\Big{(}\dfrac{2\pi}{7}\Big{)}\Bigg{)} + \Bigg{(}\text{cis}\Big{(}\dfrac{8\pi}{7}\Big{)} + \text{cis}\Big{(}\dfrac{6\pi}{7}\Big{)}\Bigg{)} + \Bigg{(}\text{cis}\Big{(}\dfrac{10\pi}{7}\Big{)} + \text{cis}\Big{(}\dfrac{4\pi}{7}\Big{)}\Bigg{)}=-1\)

\(2\cos \Big{(}\dfrac{2 \pi}{7}\Big{)}+2\cos \Big{(}\dfrac{6 \pi}{7}\Big{)}+2\cos \Big{(}\dfrac{4 \pi}{7}\Big{)}=-1\)

\(\cos \Big{(}\dfrac{2 \pi}{7}\Big{)}+\cos \Big{(}\dfrac{4 \pi}{7}\Big{)}+\cos \Big{(}\dfrac{6 \pi}{7}\Big{)}=-\dfrac{1}{2}\)

Filed Under: Factors and Roots (SM), Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 3, Band 4, Band 6, smc-1172-30-Roots > 3, smc-1172-40-Conjugate roots, smc-1172-60-Sketch solutions, smc-2597-50-Mod/Arg and powers, smc-2597-70-Conjugates

Complex Numbers, SPEC2 2023 VCAA 5 MC

Let \(z\) be a complex number where  \(\operatorname{Re}(z)>0\)  and  \(\operatorname{Im}(z)>0\).

Given  \(|\bar{z}|=4\)  and  \(\arg \left(z^3\right)=-\pi\), then \(z^2\) is equivalent to

  1. \( {4z} \)
  2. \( -2 \bar{z} \)
  3. \( 3z \)
  4. \(\bar{z}^2\)
  5. \(-4 \bar{z}\)
Show Answers Only

\(E\)

Show Worked Solution

\(\arg(z^3) = -\pi=\pi\ \ \Rightarrow \ \arg(z)=\dfrac{\pi}{3}\)

\(z\) \(=4\text{cis}\Big{(}\dfrac{\pi}{3}\Big{)}\ \ (\abs{z}=\abs{\bar z})\)  
\(z^2\) \(=16\text{cis}\Big{(}\dfrac{2\pi}{3}\Big{)} \)  
  \(=-4 \times 4\text{cis}\Big{(}-\dfrac{\pi}{3}\Big{)} \)  
  \(=-4\,\bar z\)  

 
\(\Rightarrow E\)

Filed Under: Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 4, smc-2597-50-Mod/Arg and powers, smc-2597-70-Conjugates

Copyright © 2014–2025 SmarterEd.com.au · Log in