SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, EXT1 V1 EQ-Bank 4

A light inextensible string is connected at each end to horizontal ceiling, as shown in the diagram. A mass of \(m\) kilograms hangs from a smooth ring on the string.

A horizontal force of \(F\) newtons is applied to the string until the tension in the string equals \(T\) and is constant across the whole system. At one end, the string makes an angle \(\theta\) with the ceiling and at the other end it makes an angle of \(2\theta\).
 

  1. Resolve the vertical forces to show that  \(T=\dfrac{mg}{sin\,\theta+\sin\,2\theta}\)   (1 mark)
  2. Hence, or otherwise, show  \(F=mg\Bigg( \dfrac{1-\cos\,\theta}{\sin\,\theta} \Bigg) \).   (3 marks)
Show Answers Only

a.   \(\text{See Worked Solutions}\)

b.   \(\text{See Worked Solutions}\)

Show Worked Solution

a.
                          

\(\text{Resolving forces vertically:}\)

\(T \sin \theta+T \sin 2 \theta\) \(=mg\)
\(T(\sin \theta+\sin 2 \theta)\) \(=mg\)
\(T\) \(=\dfrac{m g}{\sin \theta+\sin 2 \theta}\)

 

b.    \(\text{Resolving forces horizontally: }\)

\(F+T \cos 2 \theta\) \(=T \cos \theta\)
\(F\) \(=T(\cos \theta-\cos 2 \theta)\)
  \(=\dfrac{m g\left(\cos \theta-2 \cos ^2 \theta+1\right)}{\sin \theta+2 \sin \theta \cos \theta}\)
  \(=\dfrac{m g(1-\cos \theta)(1+2 \cos \theta)}{\sin \theta(1+2 \cos \theta)}\)
  \(=mg\left(\dfrac{1-\cos \theta}{\sin \theta}\right)\)

Filed Under: Vectors, Force and Velocity (Ext1) Tagged With: Band 3, Band 5, smc-3577-20-Force

Vectors, EXT1 V1 SM-Bank 32

A beached whale is being rescued by two jet-skis with the forces measured in kilonewtons (kN).

The angle of the forces are measured against an east-west axis line.

What is the resultant force of the two jet-skis in magnitude and direction?   (3 marks)

 

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`text{120 kN on a bearing of 096°.}`

Show Worked Solution

 

`text{Split each force into component forces:`

`underset~u = (55 cos 20, 55 sin 20)`

`underset~v = (75 cos 25, -75 sin 25)`

`underset~F_{text{net}}` `= underset~u + underset~v = ((55 cos 20 + 75 cos 25),(55 sin 20-75 sin 25))`
`|  underset~F_{text{net}}|` `= sqrt{(55 cos 20 + 75 cos 25)^2 + (55 sin 20-75 sin 25)^2}`
  `= 120. 347 …`

 

`tan theta` `= {| 55 sin 20-75 sin 25 |}/{ 55 cos 20 + 75 cos 25}`
  `= 0.10768`
`theta` `= 6^@`

 

`:. \ text{The resultant force is 120 kN on a bearing of 096°.}`

Filed Under: Vectors, Force and Velocity (Ext1) Tagged With: Band 5, smc-3577-20-Force

Vectors, EXT1 V1 EQ-Bank 3

A force described by the vector  `underset~F = ((3),(6))`  newtons is applied to a line  `l`  which is parallel to the vector  `((4),(3))`.

  1. Find the component of the force  `underset~F`  in the direction of  `l`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. What is the component of the force  `underset~F`  in the direction perpendicular to the line?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `((4.8),(3.6))`
  2. `((−1.8),(2.4))`
Show Worked Solution

i.   `underset~F = ((3),(6)), \ underset~v = ((4),(3))`

`underset~overset^v = underset~v/(|underset~v|) = underset~v/sqrt(4^2 + 3^2) = 1/5 underset~v=((0.8),(0.6))`

`underset~ F · underset~overset^v` `= ((3),(6))((0.8),(0.6))`
  `= 3 xx 0.8 + 6 xx 0.6`
  `= 6`

 

`text(proj)_(underset~v) underset~F` `= (underset~F · underset~overset^v) underset~overset^v`
  `= 6((0.8),(0.6))`
  `= ((4.8),(3.6))`

 

ii.   `text(Component of)\ underset~F ⊥ l`

`= ((3),(6)) – ((4.8),(3.6))`

`= ((−1.8),(2.4))`

Filed Under: Vectors, Force and Velocity (Ext1) Tagged With: Band 4, smc-1086-50-Force, smc-3577-20-Force

Vectors, EXT1 V1 2015 SPEC2 15 MC

The projection of the force  `underset~F = aunderset~i + bunderset~j`, where `a` and `b` are non-zero real constants, in the direction of the vector  `underset~w = underset~i + underset~j`, is

A.   `((a + b)/2)underset~w`

B.   `underset~F/(a + b)`

C.   `((a + b)/(a^2 + b^2))underset~F`

D.   `((a + b)/sqrt2)underset~w` 

Show Answers Only

`A`

Show Worked Solution
`hatw` `= tildew/sqrt(1+1)`
  `= (tildei + tildej)/sqrt2`

`tildeF*hat w = (a + b)/sqrt2`

♦ Mean mark 49%.

`(tildeF*hat w)hatw` `= ((a + b)/sqrt2) tildew/sqrt2`
  `= ((a + b)/2) tildew`

 
`=> A`

Filed Under: Vectors, Force and Velocity (Ext1) Tagged With: Band 5, smc-3577-20-Force

Copyright © 2014–2025 SmarterEd.com.au · Log in