A proton having a velocity of \(1 \times 10^6 \ \text{m s}^{-1}\) enters a uniform field with a trajectory that is initially perpendicular to the field.
Which row in the table correctly identifies the field, and its effect on the kinetic energy of the proton?
\begin{align*}
\begin{array}{l}
\rule{0pt}{2.5ex} \ & \\
\ \rule[-1ex]{0pt}{0pt}& \\
\rule{0pt}{2.5ex}\textbf{A.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{B.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{C.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{D.}\rule[-1ex]{0pt}{0pt}\\
\end{array}
\begin{array}{|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ \textit{Type of field}\ \ & \textit{Effect on} \\
\textit{}\rule[-1ex]{0pt}{0pt}& \textit{kinetic energy } \\
\hline
\rule{0pt}{2.5ex}\text{Electric}\rule[-1ex]{0pt}{0pt}&\text{Decreases}\\
\hline
\rule{0pt}{2.5ex}\text{Electric}\rule[-1ex]{0pt}{0pt}& \text{Increases}\\
\hline
\rule{0pt}{2.5ex}\text{Magnetic}\rule[-1ex]{0pt}{0pt}& \text{Decreases} \\
\hline
\rule{0pt}{2.5ex}\text{Magnetic}\rule[-1ex]{0pt}{0pt}& \text{Increases} \\
\hline
\end{array}
\end{align*}