A proton travels along a particle accelerator at 10 m s ¯1 less than the speed of light.
Compare its speed and momentum with a proton travelling at 99% the speed of light. Support your answer with calculations. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
→ First proton speed = `3 xx10^(8)-10 text{m s}^(-1)`, second proton speed = `0.99 xx 3 xx10^(8) text{m s}^(-1)`
→ Comparing the two: `(v_(p1))/(v_(p2))=(3 xx10^(8)-10)/(0.99 xx 3 xx10^(8))=1.0101`.
→ The first proton is travelling 1% faster than the second proton.
→ Calculate the relativistic momentum of the first proton (`p_(1)`):
`p_(1)` | `=(m_(0)v)/(sqrt(1-(v^(2))/(c^(2))))` | |
`=(1.673 xx10^(-27)xx(3.00 xx10^(8)-10))/(sqrt(1-((3.00 xx10^(8)-10)/(3.00 xx10^(8)))^(2)))` | ||
`=1.94 xx10^(-15)\ text{kg m s}^(-1)` |
→ Calculate the relativistic momentum of the second proton (`p_(2)`):
`p_(2)` | `=(1.673 xx10^(-27)xx0.99xx3.00 xx10^(8))/(sqrt(1-0.99^(2)))` | |
`=3.52 xx10^(-18) text{kg m s}^(-1)` |
→ Compare the two: `(p_(1))/(p_(2))=(1.94 xx10^(-15))/(3.52 xx10^(-18))=551`.
→ The momentum of the first proton is 551 times greater than the momentum of the second proton, while only going 1% faster.
→ First proton speed = `3 xx10^(8)-10 text{m s}^(-1)`, second proton speed = `0.99 xx 3 xx10^(8) text{m s}^(-1)`
→ Comparing the two: `(v_(p1))/(v_(p2))=(3 xx10^(8)-10)/(0.99 xx 3 xx10^(8))=1.0101`.
→ The first proton is travelling 1% faster than the second proton.
→ Calculate the relativistic momentum of the first proton (`p_(1)`):
`p_(1)` | `=(m_(0)v)/(sqrt(1-(v^(2))/(c^(2))))` | |
`=(1.673 xx10^(-27)xx(3.00 xx10^(8)-10))/(sqrt(1-((3.00 xx10^(8)-10)/(3.00 xx10^(8)))^(2)))` | ||
`=1.94 xx10^(-15)\ text{kg m s}^(-1)` |
→ Calculate the relativistic momentum of the second proton (`p_(2)`):
`p_(2)` | `=(1.673 xx10^(-27)xx0.99xx3.00 xx10^(8))/(sqrt(1-0.99^(2)))` | |
`=3.52 xx10^(-18) text{kg m s}^(-1)` |
→ Compare the two: `(p_(1))/(p_(2))=(1.94 xx10^(-15))/(3.52 xx10^(-18))=551`.
→ The momentum of the first proton is 551 times greater than the momentum of the second proton, while only going 1% faster.