A bogie pin is shown.
What is the expression for the shear stress in the pin?
- \( \dfrac{4P}{\pi \times d} \)
- \( \dfrac{4P}{\pi\ ÷\ d} \)
- \( \dfrac{4P}{\pi \times d^2} \)
- \( \dfrac{4P}{\pi\ ÷\ d^2} \)
Aussie Maths & Science Teachers: Save your time with SmarterEd
A component of a roller coaster car bogie is to be punched out from a 10 mm thick rectangular plate of mild steel as shown.
Calculate the shear force of the punching die if the shear stress is 345 MPa. (3 marks)
\(1630\ \text{kN} \)
\( \text{Using}\ \ \sigma_\text{s} = \dfrac{\text{F}}{\text{A}_\text{s}} \)
\( \text {Perimeter}\ = (112 \times 2)+(15 \times 4) + (\pi \times 60) = 472.5 \ \text{mm}\)
\( \text {Shear Area}\ ( \text{A}_\text{s}) = \text {perimeter of punch-out × thickness of plate} \)
\( \text {Shear Area}\ ( \text{A}_\text{s})\) | \(= 472.5 \times 10\) | |
\(=4725 \ \text{mm}^2\) | ||
\(= 4725 \times 10^{-6}\ \text{m}^2\) |
\(\text{Shear force}\) | \(=\ \text {shear stress } \times \text {shear area} \) | |
\(= 345 \times 10^6 \ \text{Pa} \times 4725 \times 10^{-6}\ \text{m}^2\) | ||
\(=1\ 630\ 125\ \text{N}\) | ||
\(=1630\ \text{kN}\) |
A mild steel nut and bolt is used to hold a bumper bar onto the chassis of a truck. The bolt needs to withstand a maximum shear load of 2 kN.
If the maximum shear stress of the material is 56 MPa and the factor of safety is 2, calculate the minimum bolt diameter. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`9.5\ text{mm}`
`text{Max load = 2000 N, Max Shear = 56 MPa}`
`text{Factor of Safety = 2}`
`sigma_A = sigma/2 = 28\ text{MPa}`
`sigma_A` | `=P/A` | |
`A` | `=P/sigma_A` | |
`(pid^2)/4` | `=P/sigma_A` | |
`d^2` | `=(4P)/(pi sigma_A)` | |
`=(4 xx 2000)/(pi xx 28\ 000\ 000)` | ||
`=9.09 xx 10^(-5)` | ||
`d` | `=9.53 xx 10^(-3)` | |
`=9.5\ text{mm (min)}` |
Orthogonal and pictorial drawings of a sheet metal electrical cable cover are given below.
--- 6 WORK AREA LINES (style=blank) ---
i.
ii. `3.46\ text{kN}`
i.
Key Points for this Drawing:
ii. | `delta_S` | `=F_S/A_S` |
`F_S` | `=delta_S xx A_S` |
`A_S = pid xx t=pi xx 20 xx 0.5 = 31.4\ text{mm}^2`
`:.F_S` | `= 110 xx 31.4` | |
`=3455.7\ text{N}` | ||
`=3.46\ text{kN}` |
The bracket and lock pin assembly shown is used to attach the repeater transmitters to the tower.
Using the data given, determine the minimum lock pin diameter to use. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`text{7 mm}`
`E = 210\ text{GPa, FoS = 5 , Total Load = 3.5 kN}`
`text{Shear Strength of Pin}\ (sigma_s) = 240\ text{MPa}`
`text{Allowable}\ sigma_s = 240/5 = 48`
`sigma_s` | `=P/(2A)\ \ text{(double shear)}` | |
`2A` | `=P/(sigma_s)` | |
`A` | `=3500/(2 xx 48)` | |
`=36.4583\ text{mm}^2` |
`A` | `=(pi xx d^2)/4` | |
`d` | `=sqrt((4A)/pi)` | |
`=sqrt((4 xx 36.4583)/pi)` | ||
`=6.813\ text{mm}` |
`text{∴ Pin diameter would be 7 mm (next available > 6.813 mm)}`
The photograph shows a turnbuckle and yoke secured by a pin.
The diameter of the pin in the turnbuckle is 40 mm and the shear stress across this pin is 55 MPa.
Find the magnitude of the axial load on the turnbuckle. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`138.23\ text{kN}`
`Ø = 40\ text{mm} = 0.04\ text{m}\ \ =>\ \ r=0.02\ text{m}`
`sigma = 55\ text{MPa} = 55\ 000\ 000\ text{Pa}`
`sigma` | `=F/A` | |
`F` | `=A\ xx \sigma` | |
`=pixx0.02^2xx55\ 000\ 000` | ||
`=0.0004pixx55\ 000\ 000` | ||
`=69\ 115.04\ text{N}` |
However, the system is in double shear, therefore:
`F` | `=2xx69\ 115.04` | |
`=138\ 230.08\ text{N}` | ||
`=138.23\ text{kN}` |