SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Polynomials, SMB-004

Let  `p(x)=x^{3}-2 a x^{2}+x-1`. When `p(x)` is divided by `(x+2)`, the remainder is 5.

Find the value of `a`.  (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`-2`

Show Worked Solution

`text{Since}\ \ p(x) -: (x+2)\ \ text{has a remainder of 5:}`

`P(-2)` `=5`  
`5` `=(-2)^3-2a(-2)^2-2-1`  
`5` `=-8-8a-2-1`  
`8a` `=-16`  
`:.a` `=-2`  

Filed Under: Polynomials Tagged With: num-title-ct-patha, smc-4242-20-Remainder Theorem

Polynomial, SMB-002

If  `P(x)=3x^3+2x^2-4x+2`, evaluate `P(-1)`.  (1 mark)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`5`

Show Worked Solution
`P(x)` `=3x^3+2x^2-4x+2`  
`P(2)` `=3(-1)^3+2(-1)^2-4(-1)+2`  
  `=-3+2+4+2`  
  `=5`  

Filed Under: Polynomials Tagged With: num-title-ct-patha, smc-4242-20-Remainder Theorem

Polynomials, SMB-001

If  `P(x)=2x^3+x^2-4x+5`, evaluate `P(2)`.  (1 mark)

--- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

`17`

Show Worked Solution
`P(x)` `=2x^3+x^2-4x+5`  
`P(2)` `=2xx2^3+2^2-4xx2+5`  
  `=16+4-8+5`  
  `=17`  

Filed Under: Polynomials Tagged With: num-title-ct-patha, smc-4242-20-Remainder Theorem

Functions, EXT1 F2 2022 HSC 3 MC

Let `P(x)` be a polynomial of degree 5. When `P(x)` is divided by the polynomial `Q(x)`, the remainder is `2x+5`.

Which of the following is true about the degree of `Q`?

  1. The degree must be 1.
  2. The degree could be 1.
  3. The degree must be 2.
  4. The degree could be 2.
Show Answers Only

`D`

Show Worked Solution

`text{Given}\ \ P(x)\ \ text{has degree 5}`

`P(x) -: Q(x)\ \ text{has remainder}\ \ 2x+5`

`text{Consider examples to resolve possibilities:}`

`text{eg.}\ \ x^5+2x+5 -: x^3 = x^2+\ text{remainder}\ 2x+5`

`:.\ text{Degree must be 2 is incorrect}`

`Q(x)\ \ text{can have a degree of 2, 3 or 4}`

`=>D`


♦ Mean mark 51%.

Filed Under: Polynomials, Remainder and Factor Theorems (Ext1) Tagged With: Band 5, num-title-ct-extension, num-title-qs-hsc, smc-1031-20-Remainder Theorem, smc-4242-20-Remainder Theorem

Functions, EXT1 F2 2021 HSC 3 MC

What is the remainder when  `P(x) = -x^3-2x^2-3x + 8`  is divided by  `x + 2`?

  1. `-14`
  2. `-2`
  3. `2`
  4. `14`
Show Answers Only

`D`

Show Worked Solution
`P(-2)` `= -(-2)^3-2(-2)^2-3(-2) + 8`
  `= 8-8 + 6 + 8`
  `= 14`

 
`=> D`

Filed Under: Polynomials, Remainder and Factor Theorems (Ext1) Tagged With: Band 3, num-title-ct-patha, num-title-qs-hsc, smc-1031-20-Remainder Theorem, smc-4242-20-Remainder Theorem

Functions, EXT1 F2 2019 HSC 11d

Find the polynomial  `Q(x)`  that satisfies  `x^3 + 2x^2-3x-7 = (x-2) Q(x) + 3`.  (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`Q(x ) = x^2 + 4x + 5`

Show Worked Solution
`(x-2) ⋅ Q(x) + 3` `= x^3 + 2x^2-3x-7`
`(x-2) ⋅ Q(x)` `= x^3 + 2x^2-3x-10`

 

`:. Q(x ) = x^2 + 4x + 5`

Filed Under: Polynomials, Remainder and Factor Theorems (Ext1) Tagged With: Band 3, num-title-ct-patha, num-title-qs-hsc, smc-1031-20-Remainder Theorem, smc-4242-10-Factor Theorem, smc-4242-20-Remainder Theorem

Functions, EXT1 F2 2015 HSC 1 MC

What is the remainder when `x^3-6x` is divided by `x + 3`?

  1. `-9`
  2. `9`
  3. `x^2-2x`
  4. `x^2-3x + 3`
Show Answers Only

`A`

Show Worked Solution
`text(Remainder)` `= P(-3)`
  `= (-3)^3-6(-3)`
  `= -27 + 18`
  `= -9`

 
`=> A`

Filed Under: Polynomials, Remainder and Factor Theorems (Ext1), Roots, Remainders and Factors Tagged With: Band 3, num-title-ct-patha, num-title-qs-hsc, smc-1031-20-Remainder Theorem, smc-4242-20-Remainder Theorem

Functions, EXT1 F2 2014 HSC 9 MC

The remainder when the polynomial  `P(x) = x^4-8x^3-7x^2 + 3`  is divided by  `x^2 + x`  is  `ax + 3`.

What is the value of  `a`?

  1. `-14`
  2. `-11`
  3. `-2`
  4. `5`
Show Answers Only

`C`

Show Worked Solution

`P(x) = x^4-8x^3-7x^2 + 3`

`text(Given)\ \ P(x)` `= (x^2 + x) *Q(x) + ax + 3`
  `= x (x + 1) Q(x) + ax + 3`

 
`P(-1) = 1 + 8-7 + 3 = 5`

`:. -a + 3` `= 5`
`a` `= -2`

 
`=>  C`

Filed Under: Polynomials, Remainder and Factor Theorems (Ext1), Roots, Remainders and Factors Tagged With: Band 4, num-title-ct-patha, num-title-qs-hsc, smc-1031-20-Remainder Theorem, smc-4242-20-Remainder Theorem

Functions, EXT1 F2 2009 HSC 2a

The polynomial  `p(x) = x^3-ax + b`  has a remainder of  `2`  when divided by  `(x-1)`  and a remainder of  `5`  when divided by  `(x + 2)`.  

Find the values of  `a`  and  `b`.   (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
`a` `= 4`
`b` `= 5`
Show Worked Solution
`p(x)` `= x^3-ax + b`
`P(1)` `= 2`
`1-a + b` `= 2`
`b` `= a+1\ \ \ …\ text{(1)}`
`P (-2)` `= 5`
`-8 + 2a + b` `= 5`
`2a + b` `= 13\ \ \ …\ text{(2)}`

 

`text(Substitute)\ \ b = a+1\ \ text(into)\ \ text{(2)}`

`2a + a+1` `= 13`
`3a` `= 12`
`:. a` `= 4`
`:. b` `= 5`

Filed Under: Polynomials, Remainder and Factor Theorems (Ext1), Roots, Remainders and Factors Tagged With: Band 3, num-title-ct-patha, num-title-qs-hsc, smc-1031-20-Remainder Theorem, smc-4242-20-Remainder Theorem

Functions, EXT1 F2 2010 HSC 2c

Let  `P(x) = (x + 1)(x-3) Q(x) + ax + b`, 

where  `Q(x)`  is a polynomial and  `a`  and  `b`  are real numbers.

The polynomial  `P(x)`  has a factor of  `x-3`.

When  `P(x)`  is divided by  `x + 1`  the remainder is  `8`. 

  1. Find the values of  `a`  and  `b`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the remainder when  `P(x)`  is divided by  `(x + 1)(x-3)`.     (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `a = -2,\ b = 6`
  2. ` -2x + 6`
Show Worked Solution

i.  `P(x) = (x+1)(x-3)Q(x) + ax + b`

`(x-3)\ \ text{is a factor   (given)}`

`:. P (3)` `= 0`
`3a + b` `= 0\ \ \ …\ text{(1)}`

 
`P(x) ÷ (x+1)=8\ \ \ text{(given)}`

`:.P(-1)` `= 8`
`-a + b` `= 8\ \ \ …\ text{(2)}`

 
`text{Subtract  (1) – (2)}`

`4a` `= -8`
`a` `= -2`

 
`text(Substitute)\ \ a = -2\ \ text{into (1)}`

`-6 + b` `= 0`
`b` `= 6`

 
`:. a= – 2, \ b=6` 
 

ii.  `P(x) -: (x + 1)(x-3)`

`= ((x+1)(x-3)Q(x)-2x + 6)/((x+1)(x-3))`

`= Q(x) + (-2x + 6)/((x+1)(x-3))`

 
`:.\ text(Remainder is)\ \ -2x + 6`

COMMENT: This question requires a fundamental understanding of the remainder theorem.

Filed Under: Polynomials, Remainder and Factor Theorems (Ext1), Roots, Remainders and Factors Tagged With: Band 3, Band 4, num-title-ct-patha, num-title-qs-hsc, smc-1031-10-Factor Theorem, smc-1031-20-Remainder Theorem, smc-4242-20-Remainder Theorem

Functions, EXT1 F2 2011 HSC 2a

Let  `P(x) = x^3-ax^2 + x`  be a polynomial, where  `a`  is a real number.

When  `P(x)`  is divided by  `x-3`  the remainder is  `12`.

Find the remainder when  `P(x)`  is divided by  `x + 1`.    (3 marks)

--- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

`-4`

Show Worked Solution

`P(x) = x^3 – ax^2 + x`

`text(S)text(ince)\ \ P(x) -: (x – 3)\ \ text(has remainder 12,)`

`P(3) = 3^3-a xx 3^2 + 3` `=12`
`27-9a + 3` `= 12`
`9a` `= 18`
`a` `=2`

 
`:.\ P(x) = x^3-2x^2 + x`

 

`text(Remainder)\ \ P(x) -: (x + 1)\ \ text(is)\ \ P(–1)`

`P(-1)` `= (-1)^3-2(-1)^2-1`
  `= – 4`

Filed Under: Polynomials, Remainder and Factor Theorems (Ext1), Roots, Remainders and Factors Tagged With: Band 3, num-title-ct-patha, num-title-qs-hsc, smc-1031-20-Remainder Theorem, smc-4242-10-Factor Theorem, smc-4242-20-Remainder Theorem

Functions, EXT1 F2 2012 HSC 8 MC

When the polynomial  `P(x)`  is divided by  `(x + 1)(x-3)`, the remainder is  `2x + 7`.  

What is the remainder when  `P(x)`  is divided by  `x-3`? 

  1. `1` 
  2. `7` 
  3. `9` 
  4. `13` 
Show Answers Only

`D`

Show Worked Solution

`text(Let)\ \ P(x) =A(x) * Q(x) + R(x)`

`text(where)\ \ A(x) = (x + 1)(x-3),\ text(and)\ \ R(x)=2x+7`

`text(When)\ \ P(x) -: (x-3),\ text(remainder) = P(3)`

`P(3)` `= 0 + R(3)`
  `= (2 xx 3) + 7`
  `= 13`

 
`=>  D`

Filed Under: Polynomials, Remainder and Factor Theorems (Ext1), Roots, Remainders and Factors Tagged With: Band 4, num-title-ct-patha, num-title-qs-hsc, smc-1031-20-Remainder Theorem, smc-4242-20-Remainder Theorem

Copyright © 2014–2025 SmarterEd.com.au · Log in