SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

PHYSICS, M4 2020 VCE 18

Students are modelling the effect of the resistance of electrical cables, \(r\), on the transmission of electrical power. They model the cables using the circuit shown in Figure 18.
 

The students investigate the effect of changing \(r\) by measuring the current in the electrical cables for a range of values. Their results are shown in Table 1 below.
 

\begin{array} {|c|c|c|}
\hline
\rule{0pt}{2.5ex} \text{Resistance of cables,}\ r\ (\Omega) \rule[-1ex]{0pt}{0pt} & \text{Current in cables},\ i\ (\text{A}) & \ \ \ \dfrac{1}{i} \Big{(}\text{A}^{-1}\Big{)}\ \ \  \\
\hline
\rule{0pt}{2.5ex} 2.4 \rule[-1ex]{0pt}{0pt} & 2.4 &  \\
\hline
\rule{0pt}{2.5ex} 3.6 \rule[-1ex]{0pt}{0pt} & 2.0 &  \\
\hline
\rule{0pt}{2.5ex} 6.4 \rule[-1ex]{0pt}{0pt} & 1.7 &  \\
\hline
\rule{0pt}{2.5ex} 7.6 \rule[-1ex]{0pt}{0pt} & 1.5 &  \\
\hline
\rule{0pt}{2.5ex} 10.4 \rule[-1ex]{0pt}{0pt} & 1.3 &  \\
\hline
\end{array}

  1. To analyse the data, the students use the following equation to calculate the resistance of the cables for the circuit.
  2.         \(r=\dfrac{24}{i}-R\)
  3. Show that this equation is true for the circuit shown in Figure 18. Show your working.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  4. Calculate the values of \(\dfrac{1}{i}\) and write them in the spaces provided in the last column of Table 1 . (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

  5. Plot a graph of \(r\) on the \(y\)-axis against \(\dfrac{1}{i}\) on the \(x\)-axis on the grid provided below. On your graph:
    • choose an appropriate scale and numbers for the \(x\)-axis
    • draw a straight line of best fit through the plotted points  (3 marks)


--- 0 WORK AREA LINES (style=lined) ---

  1. Use the straight line of best fit to find the value of the constant resistance globe, \(R\). Give your reasoning.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

a.      \(V\) \(=iR\)  
\(V\) \(=i(r+R)\)  
\(\dfrac{V}{i}\) \(=r+R\)  
\(r\) \(=\dfrac{V}{i}-R\)  
\(r\) \(=\dfrac{24}{i}-R\)  

b.   

\begin{array} {|c|c|c|}
\hline
\rule{0pt}{2.5ex} \text{Resistance of cables,}\ r\ (\Omega) \rule[-1ex]{0pt}{0pt} & \text{Current in cables},\ i\ (\text{A}) & \ \ \ \dfrac{1}{i} \Big{(}\text{A}^{-1}\Big{)}\ \ \  \\
\hline
\rule{0pt}{2.5ex} 2.4 \rule[-1ex]{0pt}{0pt} & 2.4 & 0.42 \\
\hline
\rule{0pt}{2.5ex} 3.6 \rule[-1ex]{0pt}{0pt} & 2.0 & 0.5 \\
\hline
\rule{0pt}{2.5ex} 6.4 \rule[-1ex]{0pt}{0pt} & 1.7 & 0.59 \\
\hline
\rule{0pt}{2.5ex} 7.6 \rule[-1ex]{0pt}{0pt} & 1.5 & 0.67 \\
\hline
\rule{0pt}{2.5ex} 10.4 \rule[-1ex]{0pt}{0pt} & 1.3 & 0.77 \\
\hline
\end{array}

c.    
       

d.    The equation for the line:  \(r=\dfrac{24}{i}-R\).

  • The \(y\)-intercept of the graph correlates to the value of \(R\).
  • Reading from the graph, \(R= 7\ \Omega\).

Show Worked Solution

a.      \(V\) \(=iR\)  
\(V\) \(=i(r+R)\)  
\(\dfrac{V}{i}\) \(=r+R\)  
\(r\) \(=\dfrac{V}{i}-R\)  
\(r\) \(=\dfrac{24}{i}-R\)  
♦♦ Mean mark (a) 37%.

b.   

\begin{array} {|c|c|c|}
\hline
\rule{0pt}{2.5ex} \text{Resistance of cables,}\ r\ (\Omega) \rule[-1ex]{0pt}{0pt} & \text{Current in cables},\ i\ (\text{A}) & \ \ \ \dfrac{1}{i} \Big{(}\text{A}^{-1}\Big{)}\ \ \  \\
\hline
\rule{0pt}{2.5ex} 2.4 \rule[-1ex]{0pt}{0pt} & 2.4 & 0.42 \\
\hline
\rule{0pt}{2.5ex} 3.6 \rule[-1ex]{0pt}{0pt} & 2.0 & 0.5 \\
\hline
\rule{0pt}{2.5ex} 6.4 \rule[-1ex]{0pt}{0pt} & 1.7 & 0.59 \\
\hline
\rule{0pt}{2.5ex} 7.6 \rule[-1ex]{0pt}{0pt} & 1.5 & 0.67 \\
\hline
\rule{0pt}{2.5ex} 10.4 \rule[-1ex]{0pt}{0pt} & 1.3 & 0.77 \\
\hline
\end{array}

c.    
       

d.    The equation for the line:  \(r=\dfrac{24}{i}-R\).

  • The \(y\)-intercept of the graph correlates to the value of \(R\).
  • Reading from the graph, \(R= 7\ \Omega\).
♦♦ Mean mark (d) 33%.

Filed Under: Electric Circuits Tagged With: Band 5, Band 6, smc-4284-10-V=IR, smc-4284-20-Resistence in circuits, smc-4284-40-Heating effects of current

PHYSICS, M4 2015 HSC 5 MC

Why does the electrical resistance of a metal increase as temperature increases?

  1. Lattice vibrations increase, scattering more electrons.
  2. Electrons pair up, increasing their interactions with the crystal lattice.
  3. Fewer electrons are free to move, as they fill the holes in the conduction band.
  4. Electrons move more freely through the metal, unimpeded by the crystal lattice.
Show Answers Only

\(A\)

Show Worked Solution
  • As the temperature of a metal increases, the average kinetic energy of the atoms in the lattice that make up the metal increases.
  • This causes the lattice to vibrate.
  • The vibrating lattice then interferes with the flow of electrons through the metal leading to a greater electrical resistance.

\(\Rightarrow A\)

Filed Under: Electric Circuits Tagged With: Band 3, smc-4284-40-Heating effects of current

Copyright © 2014–2025 SmarterEd.com.au · Log in