SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Properties of Geometric Figures, SM-Bank 031 MC

The diagram of a quadrilateral is shown below. 
 

Which name below does not refer to the quadrilateral in the diagram?

  1. quadrilateral \(CDAB\)
  2. quadrilateral \(BCDA\)
  3. quadrilateral \(CBAD\)
  4. quadrilateral \(CBDA\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Vertices need to be named in order (either clockwise or counter clockwise)}\)

\(CBDA\ \text{is not correct as vertex}\ B\ \text{and}\ D\ \text{are not adjacent.}\)

\(\Rightarrow D\)

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-05-Properties

Properties of Geometric Figures, SM-Bank 044

Complete the table below by placing a tick or a cross in the appropriate box to indicate which properties belong to different quadrilaterals.   (3 marks)

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Rhombus} & \textbf{Trapezium} & \textbf{Rectangle}  \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} &  &  &  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are equal} \rule[-1ex]{0pt}{0pt} &  &  &  \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} &  &  &  \\
\hline
\end{array}

--- 0 WORK AREA LINES (style=lined) ---

Show Answers Only

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Rhombus} & \textbf{Trapezium} & \textbf{Rectangle}  \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \cross \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are equal} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\end{array}

Show Worked Solution

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Rhombus} & \textbf{Trapezium} & \textbf{Rectangle}  \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \cross \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are equal} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\end{array}

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-05-Properties

Properties of Geometric Figures, SM-Bank 043

Complete the table below by placing a tick or a cross in the appropriate box to indicate which properties belong to different quadrilaterals.   (3 marks)

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Square} & \textbf{Kite} & \textbf{Parallelogram}  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} &  &  &  \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals bisect each other} \rule[-1ex]{0pt}{0pt} &  &  &  \\
\hline
\rule{0pt}{2.5ex} \text{Two pairs of equal adjacent sides} \rule[-1ex]{0pt}{0pt} &  &  &  \\
\hline
\end{array}

--- 0 WORK AREA LINES (style=lined) ---

Show Answers Only

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Square} & \textbf{Kite} & \textbf{Parallelogram}  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals bisect each other} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Two pairs of equal adjacent sides} \rule[-1ex]{0pt}{0pt} & \checkmark & \checkmark & \cross \\
\hline
\end{array}

Show Worked Solution

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Square} & \textbf{Kite} & \textbf{Parallelogram}  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals bisect each other} \rule[-1ex]{0pt}{0pt} & \checkmark & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Two pairs of equal adjacent sides} \rule[-1ex]{0pt}{0pt} & \checkmark & \checkmark & \cross \\
\hline
\end{array}

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-05-Properties

Properties of Geometrical Figures, SM-Bank 042

Complete the table below by placing a tick or a cross in the appropriate box to indicate which properties belong to different quadrilaterals.   (3 marks)

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Trapezium} & \textbf{Rectangle} & \textbf{Rhombus}  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\end{array}

--- 0 WORK AREA LINES (style=lined) ---

Show Answers Only

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Trapezium} & \textbf{Rectangle} & \textbf{Rhombus}  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \cross \\
\hline
\end{array}

Show Worked Solution

\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \ \ \ \ \textbf{Property} \rule[-1ex]{0pt}{0pt} & \textbf{Trapezium} & \textbf{Rectangle} & \textbf{Rhombus}  \\
\hline
\rule{0pt}{2.5ex} \text{Opposite sides are parallel} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Diagonals are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \cross & \checkmark \\
\hline
\rule{0pt}{2.5ex} \text{Adjacent sides are perpendicular} \rule[-1ex]{0pt}{0pt} & \cross & \checkmark & \cross \\
\hline
\end{array}

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-05-Properties

Properties of Geometrical Figures, SM-Bank 005 MC

A regular hexagon is folded in half along the dotted line.
 

 

 
The folded shape can also be called a

  1. pentagon
  2. hexagon
  3. quadrilateral
  4. nonagon
Show Answers Only

`C`

Show Worked Solution

`text{The folded shape is a quadrilateral (four sides).}`

`=>C`

Filed Under: Quadrilaterals and other Tagged With: num-title-ct-core, smc-5009-05-Properties

Special Properties, SMB-013 MC

Which statement is always true?

  1. Scalene triangles have two angles that are equal.
  2. All angles in a parallelogram are equal.
  3. The opposite sides of a trapezium are equal in length.
  4. The diagonals of a rhombus are perpendicular to each other.
Show Answers Only

`D`

Show Worked Solution

`text{Consider each option:}`

`A:\ \text{Isosceles (not scalene) have two equal angles.}`

`B:\ \text{Only opposite angles in a parallelogram are equal.}`

`C:\ \text{At least one pair of opposite sides of a trapezium are not equal.}`

`D:\ \text{Rhombuses have perpendicular diagonals.}`

`=>D`

Filed Under: Quadrilaterals and other, Special Properties Tagged With: num-title-ct-core, num-title-ct-pathc, smc-4748-20-Quadrilateral properties, smc-5009-05-Properties

Special Properties, SMB-011 MC

The diagonals of which shape below cross at right-angles?

   
A   
     
     B   
     
     C   
   
      D 
Show Answers Only

\(A\)

Show Worked Solution

`text(A rhombus has diagonals that cross at right-angles.)`

\(\Rightarrow A \)

Filed Under: Quadrilaterals and other, Special Properties Tagged With: num-title-ct-core, num-title-ct-pathc, smc-4748-20-Quadrilateral properties, smc-5009-05-Properties

Special Properties, SMB-010 MC

Which of these are always equal in length?

  1. the diagonals of a rhombus
  2. the diagonals of a parallelogram
  3. the opposite sides of a parallelogram
  4. the opposite sides of a trapezium
Show Answers Only

`C`

Show Worked Solution

`text{Consider each option:}`

`A:\ \text{rhombus diagonals are perpendicular but not always equal}`

`B:\ \text{parallelogram diagonals not always equal (see below)}`

`C:\ \text{always true (see above)}`

`D:\ \text{at least 1 pair of opposite sides of a trapezium are not equal}`
\(\Rightarrow C\)

Filed Under: Quadrilaterals and other, Special Properties Tagged With: num-title-ct-core, num-title-ct-pathc, smc-4748-20-Quadrilateral properties, smc-5009-05-Properties

Special Properties, SMB-009 MC

`PQRS` is a parallelogram.

Which of these must be a property of `PQRS`?

  1. Line `PS` is perpendicular to line `PQ`.
  2. Line `PQ` is parallel to line `PS`.
  3. Diagonals `PR` and `SQ` are perpendicular.
  4. Line `PS` is parallel to line `QR`.
Show Answers Only

`D`

Show Worked Solution

`text{By elimination:}`

`A\ \text{and}\ B\ \text{clearly incorrect.}`

`C\ \text{true if all sides are equal (rhombus) but not true for all parallelograms.}`

`text(Line)\ PS\ text(must be parallel to line)\ QR.`

`=>D`

Filed Under: Quadrilaterals and other, Special Properties Tagged With: num-title-ct-core, num-title-ct-pathc, smc-4748-20-Quadrilateral properties, smc-5009-05-Properties

Special Properties, SMB-007 MC

A closed shape has two pairs of equal adjacent sides.

What is the shape?

  1. rectangle
  2. trapezium
  3. kite
  4. triangle
Show Answers Only

`C`

Show Worked Solution

`text(Kite.)`

`text{(Note that a rectangle has a pair of equal opposite sides)}`

`=>C`

Filed Under: Quadrilaterals and other, Special Properties Tagged With: num-title-ct-core, num-title-ct-pathc, smc-4748-20-Quadrilateral properties, smc-5009-05-Properties

Copyright © 2014–2025 SmarterEd.com.au · Log in