If \(I_n=\displaystyle {\int_0^1\left((1-x)^n e^x\right) d x}\), where \(n \in N\), then for \(n \geq 1, I_n\) equals
- \(-1+n I_{n-1}\)
- \(n I_{n-1}\)
- \(-1-n I_{n-1}\)
- \(-n I_{n-1}\)
- \((1-x)^n e^x+n I_{n-1}\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
If \(I_n=\displaystyle {\int_0^1\left((1-x)^n e^x\right) d x}\), where \(n \in N\), then for \(n \geq 1, I_n\) equals
\(A\)
\(\text{Using integration by parts:}\)
\begin{aligned}
u &=(1-x)^n, & u^{′} &=n(1-x)^{n-1}\\
v^{′} & = e^x, & v & = e^x\ \\
\end{aligned}
\begin{aligned}
\int_0^1 ((1-x)^n e^x)\,dx\ &= uv-\int u^{′} v \ dx\\
& = \Bigr[(1-x)^n\,e^x\Bigr]_0 ^1- \int_0 ^1 n(1-x)^{n-1}\,e^x\ dx \\
& =-1-n\int_0 ^1 (1-x)^{n-1}\,e^x\ dx \\
& =-1-nI_{n-1} \\
\end{aligned}
\(\Rightarrow A\)
Which expression is equal to `int x^5 e^{7x} dx`?
`A`
`u = x^5` | `v^{′} = e^{7x}` | |
`u^{′} = 5x^4` | `v = 1/7 e^{7x}` |
`int uv^{′}\ dx` | `= uv-int u^{′}v \ dx` | |
`= 1/7 x^5 e^{7x}-5/7 int x^4 e^{7x}\ dx` |
`=>\ A`
Use integration by parts to find `int x e^(3x) dx`. (2 marks)
`(x e^(3x))/3-(1)/(9) e^(3x) + C`
`u` | `= x` | `\ \ \ \ u^{′}` | `= 1` |
`v^{′}` | `= e^(3x)` | `v` | `= (1)/(3) e^(3x)` |
`int x e^(3x) dx` | `= uv-int u^{′} v \ dx` |
`= (xe^(3x))/(3)-(1)/(3) int e ^(3x) dx` | |
`= (x e^(3x))/3-(1)/(9) e^(3x) + C` |
Find `int x e^(-2x)\ dx.` (3 marks)
`-1/2 xe^(-2x)-1/4 e^(-2x) + c`
`text(Integrating by parts:)`
`text(Let)` | `u` | `= x` | `v^{′}` | `= e^(-2x)` |
`u^{′}` | `= 1` | `v` | `= -1/2e^(-2x)` |
`int xe^(-2x)\ dx` | `= x · -1/2 e^(-2x) + 1/2int e^(-2x)\ dx` |
`= -1/2 xe^(-2x)-1/4 e^(-2x) + c` |
Evaluate `int_0^2 te^-t\ dt.` (3 marks)
`1-3/e^2`
`u` | `=t` | `u^{′}` | `=1` |
`v` | `=-e^-t\ dt` | `v^{′}` | `=e^-t` |
`int_0^2 te^-t\ dt =` | `[t (-e^-t)]_0^2-int_0^2 1 xx (-e^-t)\ dt` |
`=` | `[(-2e^-2)-0]-[e^-t]_0^2` |
`=` | `-2/e^2-(1/e^2 – 1)` |
`=` | `1-3/e^2` |
Find `int x e^(2x)\ dx.` (2 marks)
`(x e^(2x))/2-e^(2x)/4 + c`
`u` | `=x` | `\ \ \ \ u^{′}` | `=1` |
`v^{′}` | `= e^(2x)` | `v` | `= e^(2x)/2` |
`:.int xe^(2x)\ dx` | `=x * e^(2x)/2-int e^(2x)/2 * 1\ dx` |
`=(xe^(2x))/2-e^(2x)/4 + c` |