Using the substitution `x=tan^(2)theta`, evaluate
`int_(0)^(1)sin^(-1)sqrt((x)/(1+x))\ dx` (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Using the substitution `x=tan^(2)theta`, evaluate
`int_(0)^(1)sin^(-1)sqrt((x)/(1+x))\ dx` (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
`pi/2-1`
`x=tan^(2)theta`
`dx/(d theta)=2sec^2theta\ tantheta\ \ =>\ \ dx=2sec^2theta\ tantheta\ d theta`
`text{When}\ x=0, \ theta=0`
`text{When}\ x=1, \ theta=pi/4`
`sin^(-1)sqrt((x)/(1+x))` | `=sin^(-1)sqrt((tan^(2)theta)/(1+tan^(2)theta))` | |
`=sin^(-1)sqrt((tan^(2)theta)/(text{sec}^(2)theta))` | ||
`=sin^(-1)sqrt((sin^(2)theta))` | ||
`=sin^(-1)(sintheta)` | ||
`=theta` |
`int_(0)^(1)sin^(-1)sqrt((x)/(1+x))\ dx=int_(0)^(pi/4)\ theta xx 2sec^2theta\ tantheta\ d theta`
`text{Integrating by parts:}`
`u` | `=theta` | `u′` | `=1` |
`v′` | `=2tan theta\ sec^2 theta` | `v` | `=tan^(2)theta` |
`int_(0)^(pi/4)\ theta xx 2sec^2theta\ tantheta\ d theta`
`=[theta\ tan^(2)theta]_0^(pi/4)-int_0^(pi/4)tan^(2)theta\ d theta`
`=(pi/4 xx 1 -0)-int sec^(2)theta-1\ d theta`
`=pi/4-[tan theta-theta]_0^(pi/4)`
`=pi/4-[(1-pi/4)-0]`
`=pi/2-1`
Which expression is equal to `int x cos x\ dx`?
`C`
`u = x` | `v prime = cos x` |
`u prime = 1` | `v = sin x` |
`int uv prime\ dx` | `= uv – int u prime v\ dx` |
`= x sin x – int sin x\ dx` | |
`= x sin x + cos x + C` |
`=> C`
Find `int x tan^(-1) x\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`1/2(x^2 tan^(-1)x – x + tan^(-1) x) + c`
`I = int x tan^(-1) x\ dx`
`text(Let)\ \ \ u` | `= tan^(-1) x` | `v prime` | `= x` | |
`u prime` | `= 1/(1 + x^2)` | `v` | `= x^2/2` |
`I` | `= uv – int u prime v\ dx` |
`= tan^(-1) x · x^2/2 – int 1/(1 + x^2) · x^2/2\ dx` | |
`= x^2/2 tan^(-1) x – 1/2 int x^2/(1 + x^2)\ dx` | |
`= x^2/2 tan^(-1) x – 1/2 int (1 + x^2 – 1)/(1 + x^2)\ dx` | |
`= x^2/2 tan^(-1) x – 1/2 int 1 – 1/(1 + x^2)\ dx` | |
`= x^2/2 tan^(-1) x – 1/2 [x – tan^(-1) x] + c` | |
`= x^2/2 tan^(-1) x – 1/2 x + 1/2 tan^(-1) x + c` | |
`= 1/2(x^2 tan^(-1) x – x + tan^(-1) x) + c` |
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `d/dx (x\ f(x)-int x\ f^(′)(x)\ dx)`
`= x\ f^(′)(x) + f(x)-x\ fprime(x)`
`= f(x)`
ii. | `int tan^(−1)x\ dx` | `= x\ tan^(−1)x-int x/(1 + x^2)\ dx` |
`= x\ tan^(−1)x-1/2 ln(1 + x^2)+c` |
Evaluate `int_0^pi x cos x\ dx.` (3 marks)
`-2`
`u` | `=x` | `u′` | `=1` |
`v′` | `=cos x` | `v` | `=sinx` |
`int uv′\ dx=uv-int u′v\ dx`
`:.int_0^pi x cos x\ dx` | `=[x sin x]_0^pi – int_0^pi 1 xx sin x\ dx` |
`=0 + [cos x]_0^pi` | |
`=-2` |
Which expression is equal to `int x^2 sin x\ dx`
`C`
`u` | `= x^2,` | `\ \ \ \ u′` | `= 2x` |
`v′` | `= sin x,` | `v` | `= -cos x` |
`int uv′\ dx` | `=uv-int u′v\ dx` |
`= x^2 (-cos x) – int 2x (-cos x) dx` | |
`= -x^2 cos x + int 2x cos x\ dx` |
`=> C`
Evaluate `int_0^(1/2)(3x-1)\ cos\ (pix)\ dx`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(pi-6)/(2pi²)`
`text(Integrating by parts:)`
`u` | `=3x-1` | `u^{′}` | `=3` |
`v^{′}` | `=cos(pi x)` | `v` | `=1/pi sin(pi x)` |
`int_0^(1/2)(3x-1)\ cos\ (pix)\ dx`
`= [(3x-1)(sin\ (pix))/pi]_0^(1/2)-int_0^(1/2) 3 xx (sin\ (pix))/pi\ dx`
`= (1/(2pi)\ sin\ pi/2-0) − 3/pi[(-cos\ (pix))/pi]_0^(1/2)`
`= 1/(2pi) + 3/(pi^2)(cos\ pi/2-cos\ 0)`
`= 1/(2pi) + 3/(pi^2)(0-1)`
`= 1/(2pi)-3/(pi^2)`