Given that `3x^2 + 2xy + y^2 = 6`, find `(d^2 y)/(dx^2)` at the point (1, 1). (5 marks)
--- 7 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Given that `3x^2 + 2xy + y^2 = 6`, find `(d^2 y)/(dx^2)` at the point (1, 1). (5 marks)
--- 7 WORK AREA LINES (style=lined) ---
`- (3)/(2)`
`6x + 2y + 2x · (dy)/(dx) + 2y · (dy)/(dx)` | `= 0` |
`(2x + 2y) (dy)/(dx)` | `= -6x – 2y` |
`(dy)/(dx)` | `= (-6x – 2y)/(2x + 2y)` |
`6 + 2 (dy)/(dx) + 2 (dy)/(dx) + 2x *(d^2y)/dx^2 + 2 ((dy)/(dx))^2 + 2y · (d^2 y)/(dx^2) = 0`
`(2x + 2y) (d^2 y)/(dx^2) + 4 (dy)/(dx) + 2 ((dy)/(dx))^2 + 6 = 0`
`text(At) \ (1, 1):`
`4 (d^2 y)/(dx^2) + 4 ((-6 -2)/(2+2)) + 2 ((-6 -2)/(2 + 2))^2 + 6 ` | `= 0` |
`4 (d^2 y)/(dx^2) – 8 + 8 + 6` | `= 0` |
`(d^2 y)/(dx^2)` | `= – (3)/(2)` |
Find the value of the real constant `k` given that `kxe^(2x)` is a solution of the differential equation
`(d^2y)/(dx^2)-2 (dy)/(dx) + 5y = e^(2x) (15x + 6).` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`k = 3`
`y` | `=kxe^(2x)` |
`(dy)/(dx)` | `= ke^(2x) + kx(2e^(2x))` |
`= ke^(2x)(1 + 2x)` |
`(d^2 y)/(dx)` | `= 2ke^(2x)(1 + 2x) + 2ke^(2x)` |
`= 2ke^(2x)(1 + 2x + 1)` | |
`= 4ke^(2x)(1 + x)` |
`e^(2x)(15x + 6)` | `= (d^2 y)/(dx^2)-2(dy)/(dx) + 5y` |
`e^(2x)(15x + 6)` | `= 4ke^(2x) + 4kxe^(2x)-2ke^(2x)-4kxe^(2k) + 5kxe^(2x)` |
`e^(2x)(15x + 6)` | `= 2ke^(2x) + 5kxe^(2x)` |
` e^(2x)(15x + 6)` | `=e^(2x)(5kx + 2k)` |
`=> 5kx = 15x, \ \ 2k = 6`
`:. k = 3`
Let `y = arctan (2x).`
Find the value of `a` given that `(d^2y)/(dx^2) = ax ((dy)/(dx))^2`, where `a` is a real constant. (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
`a = -4`
`(dy)/(dx)` | `= 2x xx (1/(1 + (2x)^2))` |
`= 2/(1 + 4x^2)` | |
`= 2(1 + 4x^2)^{-1}` | |
`(d^2y)/(dx^2)` | `= 2(8x)(-1)(1 + 4x^2)^(-2)` |
`= (-16x)/(1 + 4x^2)^2` |
`(d^2y)/(dx^2)` | `= ax ((dy)/(dx))^2` |
`(-16x)/(1 + 4x^2)^2` | `= ax (2/(1 + 4x^2))^2` |
`= (4ax)/(1 + 4x^2)^2` |
`4a` | `= -16` |
`:. a` | `= -4` |
A differential equation that has `y = xsin(x)` as a solution is
`E`
`(dy)/(dx)` | `= sin(x) + xcos(x)` |
`(d^2y)/(dx^2)` | `= cos(x) + cos(x)-xsin(x)` |
`= 2cos(x)-xsin(x)` | |
`= 2cos(x) – y` |
`:. (d^2y)/(dx^2) + y= 2cos(x)`
`=> E`
Let `(dy)/(dx) = (4-y)^2`.
--- 7 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
a. | `(dy)/(dx)` | `=(4-y)^2` |
`(dx)/(dy)` | `= 1/(4-y)^2` | |
`x` | `= int 1/(4-y)^2\ dy` | |
`= int (4-y)^(-2) dy` | ||
`= (-1)(-1)(4-y)^(-1)+ c` | ||
`= 1/(4-y) + c` |
`text(When)\ \ x=0,\ \ y=3:`
`0` | `= 1/(4-3) + c` |
`:.c` | `= -1` |
`x` | `= 1/(4-y)-1` |
`x + 1` | `= 1/(4-y)` |
`1/(x + 1)` | `= 4-y` |
`:. y` | `= 4-1/(x + 1)` |
b. `d/(dx) ((4-y)^2)`
`= 2(-1)(4-y) ⋅ (dy)/(dx)`
`= -2(4-y)(4-y)^2`
`= -2(4-y)^3`
Given that `y = (x-1)e^(2x)` is a solution to the differential equation `a(d^2y)/(dx^2) + b (dy)/(dx) = y`, find the values of `a` and `b`, where `a` and `b` are real constants. (4 marks)
--- 9 WORK AREA LINES (style=lined) ---
`a = -1/4, b = 1`
`y` | `= (x-1)e^(2x)` |
`y^{′}` | `= e^(2x) + 2e^(2x) (x-1)` |
`= e^(2x) + 2y` | |
`y^{″}` | `= 2e^(2x) + 2y^{′}` |
`= 2e^(2x) + 2e^(2x) + 4e^(2x) (x-1)` | |
`= 4e^(2x) + 4e^(2x) (x-1)` | |
`= 4e^(2x) (1 + x-1)` | |
`= 4xe^(2x)` |
`ay^{″} + by^{′} = y`
`4axe^(2x) + be^(2x) (1 + 2(x-1))` | `= (x-1)e^(2x)` | |
`e^(2x)(4ax + b (2x-1)-(x-1))` | `= 0` | |
`4ax + b + 2bx-2b-x + 1` | `= 0,\ \ \ (e^(2x) != 0)` | |
`(4a + 2b-1) x + 1-b` | `= 0x + 0` |
`:.b = 1`
`4a + 2-1 = 0`
`:. a = -1/4`