Solve the differential equation `(dy)/(dx) = -x sqrt(4-y^2)` given that `y(2) = 0`. Give your answer in the form `y = f(x)`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Solve the differential equation `(dy)/(dx) = -x sqrt(4-y^2)` given that `y(2) = 0`. Give your answer in the form `y = f(x)`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`y=2sin(-(1)/(2)x^(2)+2)`
`int(dy)/(sqrt(4-y^(2)))` | `=int-x\ dx` | |
`sin^(-1)((y)/(2))` | `=-(1)/(2)x^(2)+c` |
`y(2)=0\ \=> \ c=2`
`(y)/(2)` | `=sin(-(1)/(2)x^(2)+2)` | |
`y` | `=2sin(-(1)/(2)x^(2)+2)` |
Find an expression for `y` in terms of `x` given
`dy/dx=4y-3` and when `x=-2, \ y=1`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`dy/dx` | `=4y-3` | |
`(dy)/(4y-3)` | `=1\ dx` | |
`int 1/(4y-3)\ dy` | `=int 1\ dx` | |
`1/4ln abs(4y-3)` | `=x+c` |
`text{When}\ \ y=1, x=-2:`
`1/4ln(4-3)` | `=-2+c` | |
`c` | `=2` |
`1/4ln abs(4y-3)` | `=x+2` | |
`ln abs(4y-3)` | `=4(x+2)` | |
`4y-3` | `=+-e^(4(x+2))` | |
`4y-3` | `=e^(4(x+2)),\ \ (text{since}\ y(-2)=1)` | |
`4y` | `=e^(4(x+2))+3` | |
`y` | `=(e^(4(x+2))+3)/4` |
Solve `(dy)/(dx) = e^(2y)`, finding `x` as a function of `y`. (2 marks)
`x = −1/2 e^(−2y) + c`
`(dy)/(dx)` | `= e^(2y)` |
`(dx)/(dy)` | `= e^(−2y)` |
`x` | `= int e^(−2y)\ dy` |
`:. x` | `= −1/2 e^(−2y) + c` |
Given `dy/dx = 1-y/3` and `y = 4` when `x = 2`, then
`B`
`(dy)/(dx)` | `= (3-y)/3` |
`(dx)/(dy)` | `= 3/(3-y)` |
`x` | `= int 3/(3-y)\ dy` |
`x/3` | `= -ln |3-y| + c` |
`text(Given)\ \ y=4\ \ text(when)\ \ x=2:`
`2/3= -ln|-1| + c\ \ \=>\ \ c=2/3`
`text(Find)\ \ y\ \ text{by CAS or manually (see below):}`
` x/3` | `=-ln |3-y| +2/3` |
`ln|3-y|` | `= (2-x)/3` |
`3-y` | `= ±e^((2-x)/3)` |
`y` | `= 3 ± e^((2-x)/3)` |
`=> B`
Let `(dy)/(dx) = (4-y)^2`.
--- 7 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
a. | `(dy)/(dx)` | `=(4-y)^2` |
`(dx)/(dy)` | `= 1/(4-y)^2` | |
`x` | `= int 1/(4-y)^2\ dy` | |
`= int (4-y)^(-2) dy` | ||
`= (-1)(-1)(4-y)^(-1)+ c` | ||
`= 1/(4-y) + c` |
`text(When)\ \ x=0,\ \ y=3:`
`0` | `= 1/(4-3) + c` |
`:.c` | `= -1` |
`x` | `= 1/(4-y)-1` |
`x + 1` | `= 1/(4-y)` |
`1/(x + 1)` | `= 4-y` |
`:. y` | `= 4-1/(x + 1)` |
b. `d/(dx) ((4-y)^2)`
`= 2(-1)(4-y) ⋅ (dy)/(dx)`
`= -2(4-y)(4-y)^2`
`= -2(4-y)^3`
A solution to the differential equation `(dy)/(dx) = 2/{sin(x + y)-sin(x-y)}` can be obtained from
`D`
`(dy)/(dx)` | `= 2/{sin(x) cos(y) + sin(y) cos(x)-(sin(x) cos(y)-sin(y) cos(x))}` |
`= 2/{2 sin(y) cos(x)}` | |
`= 1/{sin(y) cos(x)}` |
`sin(y) *(dy)/(dx)= sec(x)`
`int sin (y)\ dy= int sec(x)\ dx`
`=> D`