Find all the values of \(\theta\), where \(0^{\circ} \leq \theta \leq 360^{\circ}\), such that
\(\sin\,\theta=\dfrac{\sqrt{3}}{2}\) (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find all the values of \(\theta\), where \(0^{\circ} \leq \theta \leq 360^{\circ}\), such that
\(\sin\,\theta=\dfrac{\sqrt{3}}{2}\) (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\theta=60^{\circ}, 120^{\circ}\)
\(\text{Reference angle:}\ \ \sin\,\theta=\dfrac{\sqrt{3}}{2}\ \ \Rightarrow \ \ \theta = 60^{\circ}\)
\(\text{sin is positive in 1st/2nd quadrants.}\)
\(\theta=60^{\circ}, (180-60)^{\circ}=60^{\circ}, 120^{\circ}\)
Solve for all \(\theta\) in the range \(0^{\circ} \leq \theta \leq 360^{\circ}\), that make the following equation correct
\(\sin\,\theta(\sin\,\theta+1)=0\) (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\theta=0^{\circ},180^{\circ},270^{\circ},360^{\circ}\)
\(\text{If}\ \ \sin\,\theta=0\ \ \Rightarrow\ \ \theta=0^{\circ}, 180^{\circ}, 360^{\circ}\)
\(\text{If}\ \ \sin\,\theta+1=0\ \ \Rightarrow\ \ \sin\,\theta=-1\ \ \Rightarrow\ \ \theta=270^{\circ}\)
\(\theta=0^{\circ},180^{\circ},270^{\circ},360^{\circ}\)
Find all the values of \(\theta\), where \(0^{\circ} \leq \theta \leq 360^{\circ}\), such that
\(\sin\,\theta=-\dfrac{1}{\sqrt{2}}\) (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\theta=225^{\circ}, 315^{\circ}\)
\(\text{Reference angle:}\ \ \sin\,\theta=\dfrac{1}{\sqrt{2}}\ \ \Rightarrow \ \ \theta = 45^{\circ}\)
\(\text{sin is negative in 3rd/4th quadrants.}\)
\(\theta=(180+45)^{\circ}, (360-45)^{\circ}=225^{\circ}, 315^{\circ}\)
Find all the values of \(\theta\), where \(0^{\circ} \leq \theta \leq 360^{\circ}\), such that
\(\sin\,\theta=-\dfrac{\sqrt{3}}{2}\) (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\theta=240^{\circ}, 300^{\circ}\)
\(\text{Reference angle:}\ \ \sin\,\theta=\dfrac{\sqrt{3}}{2}\ \ \Rightarrow \ \ \theta = 60^{\circ}\)
\(\text{sin is negative in 3rd/4th quadrants.}\)
\(\theta=(180+60)^{\circ}, (360-60)^{\circ}=240^{\circ}, 300^{\circ}\)
Find all the values of \(\theta\), where \(0^{\circ} \leq \theta \leq 360^{\circ}\), such that
\(\sin\,\theta=\dfrac{1}{2}\) (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\theta=30^{\circ}, 150^{\circ}\)
\(\text{Reference angle:}\ \ \sin\,\theta=\dfrac{1}{2}\ \ \Rightarrow \ \ \theta = 30^{\circ}\)
\(\text{sin is positive in 1st/2nd quadrants.}\)
\(\theta=30^{\circ}, (180-30)^{\circ}=30^{\circ}, 150^{\circ}\)
Solve \(2\sin^{2}\left( \dfrac{\theta}{3}\right) = 1\) for \(-180^{\circ} \leq \theta \leq 180^{\circ}\). (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\theta=-135^{\circ}, 135^{\circ}\)
| \(2\sin^{2}\left( \dfrac{\theta}{3}\right)\) | \(= 1\) |
| \(\sin^{2}\left( \dfrac{\theta}{3}\right)\) | \(= \dfrac{1}{2}\) |
| \(\sin\left( \dfrac{\theta}{3}\right)\) | \(= \pm \dfrac{1}{\sqrt{2}}\) |
\(\text{When}\ \ \sin\left( \dfrac{\theta}{3}\right)= \dfrac{1}{\sqrt{2}}:\)
| \(\dfrac{\theta}{3}\) | \(= 45, 180-45=45^{\circ}, 135^{\circ}\) |
| \(\theta\) | \(= 135^{\circ}, 405^{\circ}\) |
\(\text{When}\ \ \sin\left( \dfrac{\theta}{3}\right)= -\dfrac{1}{\sqrt{2}}:\)
| \(\dfrac{\theta}{3}\) | \(= -45^{\circ}, -135^{\circ}\) |
| \(\theta\) | \(= -135^{\circ}, -405^{\circ}\) |
\(\therefore \theta=-135^{\circ}, 135^{\circ}\ \ \text{for}\ \ -180^{\circ} \leq \theta \leq 180^{\circ}\)
Find all the values of `theta`, where `0^@ <=theta <= 360^@`, such that
`sin(theta-30^@)=-1/2` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`theta=0^@, 240^@ and 360^@`
`sin30^@=1/2\ \ =>\ \ text{Reference angle}\ =30^@`
`=>\ text{sin is negative in 3rd and 4th quadrants}`
| `sin(theta-30^@)` | `=180+30, 360-30` | |
| `=210^@, 330^@` |
`theta-30^@=210^@\ \ =>\ \ theta=240^@`
`theta-30^@=330^@\ \ =>\ \ theta=360^@`
`text{Consider}\ theta = 0^@`
`sin(0-30^@)=sin(-30^@)=-1/2`
`:.theta=0^@, 240^@ and 360^@`
Find all the values of `theta`, where `0^@ <=theta <= 360^@`, such that
`sin(theta-60^@)=-sqrt3/2` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`theta=0^@, 300^@ and 360^@`
`sin60^@=sqrt3/2\ \ =>\ \ text{Reference angle}\ =60^@`
`=>\ text{sin is negative in 3rd and 4th quadrants}`
| `sin(theta-60^@)` | `=180+60, 360-60` | |
| `=240^@, 300^@` |
`theta-60^@=240^@\ \ =>\ \ theta=300^@`
`theta-60^@=300^@\ \ =>\ \ theta=360^@`
`text{Consider}\ theta = 0^@`
`sin(0-60^@)=sin(-60^@)=-sqrt3/2`
`:.theta=0^@, 300^@ and 360^@`
Solve the equation \(\sin\left(\dfrac{x}{2}\right) = -\dfrac{1}{2}\) for \(360^{\circ} \leq x \leq 720^{\circ}\) (2 marks)
\(x =420^{\circ}, 660^{\circ}\)
\(\sin\left(\dfrac{x}{2}\right) = -\dfrac{1}{2}\)
\(\text{Reference angle:}\ \sin\,30^{\circ}=\dfrac{1}{2}\)
\(\text{Since sin is negative in 3rd/4th quarter:}\)
| \(\dfrac{x}{2}\) | \(=180+30, 360-30, 360+180+30,\ …\) |
| \(=210^{\circ}, 330^{\circ}, 390^{\circ},\ …\) | |
| \(x\) | \(=420^{\circ}, 660^{\circ}, 780^{\circ},\ …\) |
\(\text{Given}\ \ 360^{\circ} \leq x \leq 720^{\circ}:\)
\(\therefore x =420^{\circ}, 660^{\circ}\)
Solve \(\sin\left(\dfrac{x}{2}\right)= \dfrac{1}{2}\) for \(0^{\circ} \leq x \leq 360^{\circ}\). (2 marks)
\(x = 60^{\circ}, 300^{\circ}\)
\(\sin\left(\dfrac{x}{2}\right)= \dfrac{1}{2}\ \ \text{for}\ \ 0^{\circ} \leq x \leq 360^{\circ}\)
\(\Rightarrow\ \text{Reference angle}\ = 30^{\circ}\)
| \(\dfrac{x}{2}\) | \(= 30^{\circ}, 180-30, 360+30, …\) |
| \(=30^{\circ}, 150^{\circ}, 390^{\circ},\ …\) |
\(\therefore x = 60^{\circ}, 300^{\circ}\ \ \text{for}\ \ 0^{\circ} \leq x \leq 360^{\circ}\)
Find the exact values of \(x\) such that \(2\sin\,x =-\sqrt{3}\), where \(0^{\circ} \leq x \leq 360^{\circ}\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(240^{\circ}, 300^{\circ}\)
| \(2\sin\,x\) | \(=-\sqrt{3}\ \ \text{where}\ \ 0^{\circ} \leq x \leq 360^{\circ}\) |
| \(\sin\,x\) | \(= -\dfrac{\sqrt{3}}{2}\) |
| \(\sin\,60^{\circ}\) | \(= \dfrac{\sqrt{3}}{2}\) |
\(\text{Since}\ \sin\,x\ \text{is negative in 3rd/4th quadrants:}\)
| \(x\) | \(= 180+60,\ 360-60\) |
| \(= 240^{\circ}, 300^{\circ}\) |
Find the exact value of
\(\sin(-300^{\circ})\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\dfrac{\sqrt{3}}{2}\)
\(\sin(-300^{\circ})= \sin\,60^{\circ}\)
\(\text{Reference angle:}\ 60^{\circ}\)
\(\text{Since sin is positive in 1st quadrant:}\)
\(\sin(-300^{\circ})= \sin\,60^{\circ}=\dfrac{\sqrt{3}}{2}\)
Find the exact value of
\(\sin(-210^{\circ})\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\dfrac{1}{2}\)
\(\sin(-210^{\circ})= \sin\,150^{\circ}\)
\(\text{Reference angle:}\ 180-150=30^{\circ}\)
\(\text{Since sin is positive in 2nd quadrant:}\)
\(\sin(-210^{\circ})= \sin\,30^{\circ}=\dfrac{1}{2}\)
Find the solutions of \(2\sin\,\theta = 1\) for \(0^{\circ} \leq \theta \leq 360^{\circ}\). (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
\(30^{\circ}, 150^{\circ}\)
\(2\sin\,\theta=1\ \ \Rightarrow\ \ \sin\,\theta=\dfrac{1}{2}\)
\(\text{Reference angle:}\ \sin\,30^{\circ}=\dfrac{1}{2}\)
\(\text{Since sin is positive in the 1st/2nd quadrants:}\)
| \(\therefore\ \theta\) | \(= 30^{\circ}, 180-30^{\circ}\) |
| \(= 30^{\circ}, 150^{\circ}\) |
Solve \(\sqrt{2}\,\sin\,x = 1\) for \(0^{\circ} \leq x \leq 360^{\circ}.\) (2 marks)
\(45^{\circ}, 135^{\circ}\)
\(\sqrt{2}\,\sin\,x = 1\ \ \Rightarrow \ \ \sin\,x= \dfrac{1}{\sqrt{2}} \)
\(\text{Reference angle:}\ \sin\,45^{\circ} = \dfrac{1}{\sqrt{2}}\)
\(\text{Since sin is positive in 1st/2nd quadrants:}\)
| \(\therefore x\) | \(= 45^{\circ}, (180-45)^{\circ}\) |
| \(= 45^{\circ}, 135^{\circ}\) |
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. \(45^{\circ}\)
b. \(-\dfrac{1}{\sqrt{2}}\)
a. \(315^{\circ}\ \text{is in the 4th quadrant.}\)
\(\text{Reference angle:}\ \ 360-315=45^{\circ}\)
b. \(\sin 45^{\circ} = \dfrac{1}{\sqrt{2}}\)
\(\Rightarrow \ \sin \theta<0\ \ \text{in 4th quadrant}\)
\(\therefore \sin 315^{\circ} = -\dfrac{1}{\sqrt{2}}\)