SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Advanced Trigonometry, 2ADV T2 SM-Bank 40

Let  \((\tan\,\theta-1) (\sin\,\theta-\sqrt{3}\cos\,\theta)(\sin\,\theta + \sqrt{3}\cos\,\theta) = 0\).

  1. State all possible values of \(\tan\,\theta\).   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence, find all possible solutions for \((\tan\,\theta-1) (\sin^{2}\theta-3\cos^{2}\theta) = 0\), where \(\ \ 0^{\circ} \leq \theta \leq 180^{\circ}\)   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(\tan\,\theta = 1\ \ \text{or}\ \ \tan\,\theta = \pm \sqrt {3}\)

b.   \(\theta = 45^{\circ},60^{\circ},120^{\circ}\)

Show Worked Solution

a.   \((\tan\,\theta-1) (\sin\,\theta-\sqrt{3}\cos\,\theta)(\sin\,\theta + \sqrt{3}\cos\,\theta) = 0\)

\(\Rightarrow \tan\,\theta = 1\)

♦ Mean mark 42%.
\(\Rightarrow \sin\,\theta-\sqrt{3}\cos\,\theta\) \(=0\)
\(\sin\,\theta\) \(=\sqrt{3}\cos\,\theta\)
\(\tan\,\theta\) \(=\sqrt{3}\)

 

\(\Rightarrow\sin\,\theta + \sqrt{3}\cos\,\theta\) \(=0\)
\(\sin\,\theta\) \(=-\sqrt{3}\cos\,\theta\)
\(\tan\,\theta\) \(=-\sqrt{3}\)

 
\(\therefore \tan\,\theta = 1\ \ \text{or}\ \ \tan\,\theta = \pm \sqrt{3}\)
  

b.   \((\tan\,\theta-1)(\sin^2\theta-3\cos^2\theta) = 0\)

\(\text{Using part a:}\)

♦ Mean mark 42%.

\((\tan\,\theta-1) (\sin\,\theta-\sqrt{3}\cos\,\theta)(\sin\,\theta + \sqrt{3}\cos\,\theta) = 0\)

\(\Rightarrow \tan\,\theta\) \(= 1\) \(\ \ \ \ \ \ \ \ \ \) \(\tan\,\theta\) \(= \pm \sqrt{3}\)
\(\theta\) \(= 45^{\circ}\)   \(\theta\) \(= 60^{\circ}, 120^{\circ}\)

 
\(\therefore \theta = 45^{\circ},60^{\circ},120^{\circ}\ \ \ \ (0^{\circ} \leq \theta \leq 180^{\circ})\)

Filed Under: Exact Values, Equations and Trig Graphs Tagged With: Band 5, num-title-ct-pathd, smc-5610-70-Harder equations

Advanced Trigonometry, 2ADV T2 2019 HSC 13a

Solve  \(2\sin\,\theta\,\cos\,\theta=\sin\,\theta\)  for  \(0^{\circ} \leq \theta \leq 360^{\circ}\).   (3 marks)

Show Answers Only

\(\theta=0^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}, 360^{\circ}\)

Show Worked Solution

♦ Mean mark 49%.

\(2\sin\,\theta\,\cos\,\theta\) \(=\sin\,\theta\)
\(2\sin\,\theta\,\cos\,\theta-\sin\,\theta\) \(= 0\)
\(\sin\,\theta(2\cos\,\theta-1)\) \(=0\)

 
\(\sin\,\theta=0:\)

\(\Rightarrow \theta=0^{\circ}, 180^{\circ}, 360^{\circ}\)
 

\(\cos\,\theta=\dfrac{1}{2}:\)

\(\text{Reference angle}\ =60^{\circ}\)

\(\text{cos is positive in 1st/4th quadrants.}\)

\(\Rightarrow \theta=60^{\circ}, (360-60)^{\circ} = 60^{\circ}, 300^{\circ}\) 

Filed Under: Exact Values, Equations and Trig Graphs Tagged With: Band 5, num-title-ct-pathd, num-title-qs-hsc, smc-5610-70-Harder equations

Advanced Trigonometry, 2ADV T2 2004 HSC 8a

  1. Show that  \(\cos\,\theta\,\tan\,\theta = \sin\,\theta\).   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Hence solve  \(8\sin\,\theta\,\cos\,\theta\,\tan\,\theta = \dfrac{1}{\sin\,\theta}\)  for  \(0^{\circ} \leq \theta \leq 360^{\circ}\).   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. \(\text{Proof (See Worked Solutions)}\)
  2. \(30^{\circ}, 150^{\circ}\)
Show Worked Solution

a.    \(\text{Prove}\ \cos\,\theta\,\tan\,\theta = \sin\,\theta\)

\(\text{LHS}\) \(= \cos\,\theta\,\tan\,\theta\)
  \(=\cos\,\theta \times \dfrac{\sin\,\theta}{\cos\,\theta}\)
  \(= \sin\,\theta\)
  \(=\ \text{RHS}\)

 

b.    \(8\sin\,\theta\,\cos\,\theta\,\tan\,\theta\) \(= \dfrac{1}{\sin\,\theta}\)
  \(8\sin^{2}\theta\) \(= \dfrac{1}{\sin\,\theta}\)
  \(8\sin^{3}\theta\) \(= 1\) 
  \(\sin^{3}\theta\) \(=\dfrac{1}{8}\)
  \(\sin\,\theta\)  \(=\dfrac{1}{2}\) 

 
\(\text{Reference angle:}\ \theta=30^{\circ}\)

\(\text{sin is positive in 1st/2nd quadrants.}\)

\(\therefore \ \theta=30^{\circ}, (180-30)^{\circ}=30^{\circ}, 150^{\circ}\)

Filed Under: Exact Values, Equations and Trig Graphs Tagged With: Band 4, Band 5, num-title-ct-pathd, num-title-qs-hsc, smc-5610-70-Harder equations

Advanced Trigonometry, 2ADV T2 SM-Bank 34

Solve the equation  \(\sqrt{3}\sin\,\theta = \cos\,\theta\)  for  \(-180^{\circ} \leq \theta \leq 180^{\circ}\).   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\theta = 30^{\circ}\ \text{or}\ -150^{\circ}\)

Show Worked Solution

\(\text{Divide both sides by}\ \cos\,\theta:\)

MARKER’S COMMENT: Many students who found the base angle correctly could not solve within the restrictions.
\(\sqrt{3}\sin\,\theta\) \(=\cos\,\theta\)
\(\sqrt{3}\tan\,\theta\) \(= 1\)
\(\tan\,\theta\) \(= \dfrac {1}{\sqrt{3}}\)

 
\(\text{Reference angle:}\ \theta=30^{\circ}\)

\(\therefore\ \theta = 30^{\circ}\ \text{or}\ -150^{\circ}, \  \text{for }-180^{\circ} \leq \theta \leq 180^{\circ}\)

Filed Under: Exact Values, Equations and Trig Graphs Tagged With: Band 4, num-title-ct-pathd, smc-5610-70-Harder equations

Advanced Trigonometry, 2ADV T2 SM-Bank 2

Find all solutions of the equation  \(2 \cos\,\theta = \dfrac{\sqrt{3}}{\tan\,\theta}\),  for  \(0^{\circ} \leq \theta \leq 360^{\circ}\)   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\theta = 60^{\circ}, 90^{\circ}, 120^{\circ}, 270^{\circ}\)

Show Worked Solution

\(2 \cos\,\theta = \dfrac{\sqrt{3}}{\tan\,\theta}\)

\(2 \cos\,\theta-\dfrac{\sqrt{3}\cos\,\theta}{\sin\,\theta}\) \(= 0\)  
\(\cos\,\theta\left(2-\dfrac{\sqrt{3}}{\sin\,\theta}\right) \) \(=0\)  

 
\(\text{If}\ \ \cos\,\theta=0:\)

\(\Rightarrow\ \ \theta=90^{\circ}, 270^{\circ}\)
  

\(\text{If}\ \ 2-\dfrac{\sqrt{3}}{\sin\,\theta} = 0\ \Rightarrow\ \ \sin\,\theta = \dfrac{\sqrt{3}}{2}:\)

\(\Rightarrow\ \ \theta = 60^{\circ}, 120^{\circ}\)

Filed Under: Exact Values, Equations and Trig Graphs Tagged With: Band 4, num-title-ct-pathd, smc-5610-70-Harder equations

Advanced Trigonometry, 2ADV T2 EQ-Bank 5

Solve  \(\sin x-\cos x=0 \quad-180^{\circ} \leqslant x \leqslant 180^{\circ}\)   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

\(x=45^{\circ}, -135^{\circ}\)

Show Worked Solution
  \(\sin x-\cos x\) \(=0\)
  \(\dfrac{\sin x}{\cos x}-\dfrac{\cos x}{\cos x}\) \(=0\)
  \(\tan x-1\) \(=0\)
  \(\tan x\) \(=1\)
  \(x\) \(=\tan ^{-1}(1)\)

 
\(\therefore x=45^{\circ}, -135^{\circ}\)

Filed Under: Exact Values, Equations and Trig Graphs Tagged With: Band 4, num-title-ct-pathd, smc-5610-70-Harder equations

Advanced Trigonometry, 2ADV T2 EQ-Bank 2

Express  \(\dfrac{3}{\sin(180+\theta)}+5 \cos (90-\theta)\)  as a single fraction in terms of \(\sin \theta\), given all angles are measured in degrees.   (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\dfrac{-3+5 \sin ^2 \theta}{\sin\,\theta}\)

Show Worked Solution

\(\dfrac{3}{\sin(180+\theta)}+5 \cos (90-\theta)\)

\(=-\dfrac{3}{\sin\,\theta}+5 \sin\,\theta\)

\(=-\dfrac{3}{\sin\,\theta}+\dfrac{5\sin^{2}\theta}{\sin\,\theta}\)

\(=\dfrac{-3+5 \sin ^{2}\theta}{\sin\,\theta}\)

Filed Under: Exact Values, Equations and Trig Graphs Tagged With: Band 4, num-title-ct-pathd, smc-5610-70-Harder equations

Advanced Trigonometry, 2ADV T2 2014 HSC 7 MC

How many solutions of the equation  `(sin theta-1)(tan theta + 2) = 0`  lie between `0°` and `360°`?

  1. `1`
  2. `2`
  3. `3`
  4. `4`
Show Answers Only

`B`

Show Worked Solution
♦♦♦ Mean mark 25%, making it the toughest MC question in the 2014 exam.

`text(When)\ (sin theta-1)(tan theta + 2) = 0`

`(sin theta-1) = 0\ \ text(or)\ \ tan theta + 2 = 0`

`text(If)\ \ sin theta-1= 0:`

`sin theta= 1\ \ =>\ \ theta= 90°,\ \ \ 0° < theta < 360°`
 

`text(If)\ \ tan theta + 2= 0:`

`tan theta= -2`

`text{Since}\ tan\ 90°\ text{is undefined, there are only 2 solutions when}`

`tan theta = -2\ \text{(which occurs in the 1st and 4th quadrants).}`
  

`:.\ 2\ text(solutions)`

`=>  B`

Filed Under: Exact Values, Equations and Trig Graphs Tagged With: Band 6, num-title-ct-pathd, num-title-qs-hsc, smc-5610-70-Harder equations

Advanced Trigonometry, 2ADV T2 EQ-Bank 1 MC

Determine the number of values of \(\theta\) in the range  \(0^{\circ} \leqslant \theta \leqslant 360^{\circ}\)  that satisfy the equation

\((\tan \theta-\sqrt{3})(\cos^{2}\theta-1)=0 \)

  1. \(3\)
  2. \(4\)
  3. \(5\)
  4. \(6\)
Show Answers Only

\(C\)

Show Worked Solution

\(\tan \theta = \sqrt{3}\ \rightarrow \text{2 solutions} \)

\(\cos^{2}\theta\) \(=1\)  
\(\cos\theta\) \(= \pm 1\)  
\(\theta\) \(=0^{\circ}, 180^{\circ}, 360^{\circ}\ \rightarrow \text{3 solutions} \)  

 
\(\Rightarrow C\)

Filed Under: Exact Values, Equations and Trig Graphs Tagged With: Band 5, num-title-ct-pathd, smc-5610-70-Harder equations

Copyright © 2014–2025 SmarterEd.com.au · Log in