SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

MATRICES, FUR1 2019 VCAA 5 MC

`[(2, 2, 0, -2), (2, 0, -2, 0), (0, 2, 0, -2), (2, 2, -2, 0)][(v), (w), (x), (y)]=[(2), (6), (-8), (4)]`
 

Which one of the following systems of simultaneous linear equations best represents the matrix equation above?

A.   `2v + 2w - 2y` `= 2` B.   `2v + 2w - 2y` `= 2`
  `2v - 2x` `= 6`   `2v - 2x` `= 6`
  `2v - 2y` `= -8`   `2w - 2y` `= -8`
  `2v + 2w` `= 4`   `2v + 2w - 2x` `= 4`
           
C.   `2v + 2w + 2y` `= 2` D.   `2v + 2w - 2y` `= 2`
  `2v - 2x` `= 6`   `2v - 2x` `= 6`
  `2w - 2y` `= -8`   `2w - 2y` `= -8`
  `2v + 2w - 2x` `= 4`   `2v + 2w + 2x` `= 4`
           
E.   `2v + 2w - 2y` `= 2`      
  `2v - 2w` `= 6`      
  `2w - 2y` `= -8`      
  `2v + 2w - 2x` `= 4`      
Show Answers Only

`B`

Show Worked Solution

`text(Creating equations from the matrix:)`

`2v + 2w – 2y` `= 2`
`2v – 2x` `= 6`
`2w – 2y` `= -8`
`2v + 2w – 2x` `= 4`

 

`=>  B`

Filed Under: Simultaneous Equations Tagged With: Band 4, smc-617-10-Matrix to SE

MATRICES, FUR1 2009 VCAA 4 MC

The matrix equation `[[4,2,8],[2,0,3],[0,3,−1]][[x],[y],[z]]=[[7],[2],[6]]` can be used to solve the system of simultaneous linear equations

 

A.    `4x + 2y + 8z = 7`
     `2x + 3y = 2`
     `3x - y = 6`

 

B.    `4x + 2y + 8z = 7`
     `2x + 3y = 2`
     `3y - z = 6`

 

C.    `4x + 2y + 8z = 7`
     `2y + 3z = 2`
     `3x - z = 6`

 

D.    `4x + 2y + 8z = 7`
     `2x + 3z = 2`
     `3y - z = 6`

 

E.    `4x + 2y + 8z = 7`
     `2x + 3z = 2`
     `3x - z = 6`

 

Show Answers Only

`D`

Show Worked Solution

`text(Expanding the matrix equation,)`

`4x + 2y + 8z = 7`

`2x + 3z = 2`

`3y – z = 6`

`=>  D`

Filed Under: Simultaneous Equations Tagged With: Band 3, smc-617-10-Matrix to SE

MATRICES, FUR1 2010 VCAA 5 MC

A system of three simultaneous linear equations is written in matrix form as follows.

`[(1, – 2, 0), (1, 0, 3), (0, 2, – 1)] [(x), (y), (z)] = [(4), (11), (– 5)]`

 

One of the three linear equations is

A.  `x - 2y + z = 4`

B.  `x + y + 3z = 11`

C.  `2x - y = – 5`

D.  `x + 3z = 11`

E.  `3y - z = – 5`

Show Answers Only

`D`

Show Worked Solution

`text(Expanding the matrix,)`

`x – 2y` `= 4`
`x + 3z` `= 11`
`2y – z` `= – 5`

 
`=>   D`

Filed Under: Simultaneous Equations Tagged With: Band 4, M/C, smc-617-10-Matrix to SE

MATRICES, FUR1 2012 VCAA 9 MC

`[(3,4), (1,2)] × [(a),(3)] = [(6,3), (2,-1)] × [(2),(b)]`
  

Which set of equations below could be used to determine the values of `a` and `b` that are shown in the matrix equation above?

A.   `a - b = 2`

       `a + b = 0`

B.   `a + b = -2`

       `a - b = 0`

C.   `a + b = 2`

       `a - b = 0`

D.   `a - b = 8`

       `a + b = 2`

E.   `a - b = 8`

       `a + b = -2` 

Show Answers Only

`B`

Show Worked Solution

`text(Finding the matrix product of both sides:)`
 

 `[(3,4),(1,2)][(a),(3)] = [(6,3),(2,−1)][(2),(b)]`

♦ Mean mark 39%.
 

`3a + 12` `= 12 + 3b`
`a – b` `= 0\ \ …\ (1)`
`a + 6` `= 4 – b`
`a + b` `=−2\ \ …\ (2)`

 
`rArr B`

Filed Under: Matrix Calculations, Simultaneous Equations Tagged With: Band 5, smc-616-30-Matrix Product, smc-617-10-Matrix to SE

Copyright © 2014–2025 SmarterEd.com.au · Log in