Let `h:[-3/2, oo) -> R,\ h(x) = sqrt(2x + 3)-2.`
Find the domain and the rule of the inverse function `h^(-1)`. (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `h:[-3/2, oo) -> R,\ h(x) = sqrt(2x + 3)-2.`
Find the domain and the rule of the inverse function `h^(-1)`. (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
`[–2, oo)`
`y = sqrt (2x + 3)-2`
`text(Inverse: swap)\ \ x ↔ y`
| `x` | `= sqrt(2y + 3)-2` |
| `sqrt(2y + 3)` | `= x + 2` |
| `2y + 3` | `= (x + 2)^2` |
| `y` | `= 1/2(x + 2)^2 -3/2` |
| `:. h^(-1)` | `= 1/2(x + 2)^2-3/2` |
| `text(Domain)\ \ h^(-1)(x)` | `= text(Range)\ h(x)` |
| `= [–2, oo)` |
The inverse of the function `f: R^+ -> R,\ f(x) = 1/sqrt x - 3` is
`D`
`text(Let)\ \ y = f(x)`
`text(Inverse: swap)\ \ x harr y`
| `x` | `= 1/sqrt y – 3` |
| `x + 3` | `= 1/sqrt y` |
| `y` | `= 1/(x + 3)^2 = f^-1(x)` |
| `text(Domain)\ (f^-1(x))` | `= text(Range)\ (f)` |
| `= (– 3, oo)` |
`=> D`
Which one of the following is the inverse function of `g: [3, oo) -> R,\ g(x) = sqrt (2x - 6)?`
`D`
`text(Let)\ \ y = g(x)`
`text(Inverse: swap)\ x ↔ y`
| `x` | `= sqrt (2y – 6)` |
| `x^2` | `= 2y – 6` |
| `y` | `= (x^2 + 6)/2` |
`text(Domain)\ (g^(-1)) = text(Range)\ (g) = [0, oo)`
`=> D`
The inverse function of `g: [2,∞) -> R, g(x) = sqrt(2x - 4)` is
`=> D`
`text(Let)\ \ y = g(x)`
`text(Inverse: swap)\ x ↔ y`
| `x` | `= sqrt(2y – 4)` |
| `x^2` | `= 2y-4` |
| `2y` | `=x^2+4` |
| `:. y` | `= (x^2 +4)/2` |
`g^(−1)(x) = (x^2 + 4)/2`
`text(Domain)\ (g^(−1)) = text(Range)\ g(x) = [0,∞)`
`=> D`
The inverse function of `f:\ text{(−2, ∞)} -> R,\ f(x) = 1/sqrt(x + 2)` is
| A. `f^-1:\ R^+ -> R` | `f^-1(x) = 1/x^2 - 2` |
| B. `f^-1: R text(\{0}) -> R` | `f^-1(x) = 1/x^2 - 2` |
| C. `f^-1: R^+ -> R` | `f^-1(x) = 1/x^2 + 2` |
| D. `f^-1:\ text{(−2, ∞)} -> R` | `f^-1(x) = x^2 + 2` |
| E. `f^-1:\ (2, oo) -> R` | `f^-1(x) = 1/(x^2 - 2)` |
`A`
`text(Let)\ y = f(x)`
`text(Inverse: swap)\ x ↔ y`
| `x` | `= 1/(sqrt(y + 2))` |
| `sqrt(y+2)` | `=1/x` |
| `:.y` | `=1/(x^2) – 2` |
| `text(Domain of)\ \ f^(−1)` | `= text(Range)\ f(x)` |
| `= R^+` |
`=> A`
The inverse of the function `f: R^+ -> R,\ f(x) = 1/sqrt x + 4` is
| A. | `f^-1: (4, oo) -> R` | `f^-1(x) = 1/(x - 4)^2` |
| B. | `f^-1: R^+ -> R` | `f^-1(x) = 1/x^2 + 4` |
| C. | `f^-1: R^+ -> R` | `f^-1(x) = (x + 4)^2` |
| D. | `f^-1:\ text{(−4, ∞)} -> R` | `f^-1(x) = 1/(x + 4)^2` |
| E. | `f^-1:\ text{(−∞, 4)} -> R` | `f^-1(x) = 1/(x - 4)^2` |
`A`
`text(Let)\ \ y = f(x)`
`text(Inverse: swap)\ x ↔ y`
| `x` | `= 1/sqrty + 4` |
| `x – 4` | `= 1/sqrty` |
| `sqrty` | `= 1/(x – 4)` |
| `y` | `= 1/((x – 4)^2) = f^(−1)(x)` |
`text(Domain)(f^(−1)) = text(Range)\ (f) = (4,∞)`
`=> A`