Let `h: R^+ ∪ {0} → R, \ h(x) = ( 7)/(x + 2)-3`.
- State the range of `h`. (1 mark)
--- 4 WORK AREA LINES (style=lined) ---
- Find the rule for `h^-1`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `h: R^+ ∪ {0} → R, \ h(x) = ( 7)/(x + 2)-3`.
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
a. `y_text(max)\ text(occurs when) \ x = 0`
`y_text(max) = (7)/(2)-3 = (1)/(2)`
`text(As) \ \ x → ∞ , \ (7)/(x + 2) \ → \ 0^+`
`:. \ text(Range) \ \ h(x) = (-3, (1)/(2))`
b. `y = (7)/(x + 2)`
`text(Inverse: swap) \ x ↔ y`
| `x` | `= (7)/(y + 2)-3` |
| `x + 3` | `= (7)/(y + 2)` |
| `y + 2` | `= (7)/(x + 3)` |
| `y` | `= (7)/(x + 3)-2` |
`:. \ h^-1 = (7)/(x + 3)-2`
Find the rule of `f^(-1)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. `text(Let)\ \ y = 1/(3x-1)`
`text(Inverse: swap)\ \ x↔ y`
| `x` | `= 1/(3y-1)` |
| `3y-1` | `= 1/x` |
| `3y` | `= 1/x + 1` |
| `y` | `= 1/(3x) + 1/3` |
b. `x in R\ text(\){0}`
c. `f(x) = 1/(3x-1) \ -> \ f(x) = 1/(3x) + 1/3`
`f(x + 1/3) = 1/(3(x + 1/3)-1) = 1/(3x)`
`:. c = -1/3,\ \ d = 1/3`
Let `f: (2, ∞) -> R`, where `f(x) = 1/((x-2)^2)`.
State the rule and domain of `f^(-1)`. (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
`f^(-1)(x) = 1/sqrtx + 2`
`text(Domain of)\ \ f^(-1)(x):\ (0, ∞)`
`y = 1/((x-2)^2)`
`text(Inverse: swap)\ \ x ↔ y`
| `x` | `= 1/((y-2)^2)` |
| `(y-2)^2` | `= 1/x` |
| `y-2` | `= 1/sqrtx` |
| `y` | `= 1/sqrtx + 2` |
`:. f^(-1)(x) = 1/sqrtx + 2`
`text(Domain of)\ \ f^(-1)(x):\ (0, ∞)\ \ text(or)\ \ R^+`
Let `f: R\ text(\)\ {0} -> R` where `f(x) = 3/x-4.` Find `f^-1`, the inverse function of `f.` (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
`:. f^-1 (x) = 3/(x + 4),\ \ x in R\ text(\)\ {-4}`
`text(Let)\ \ y = f(x)`
`text(For inverse swap)\ \ x harr y`
| `x` | `= 3/y-4` |
| `3/y` | `= x+4` |
| `y` | `= 3/(x + 4)` |
`:. f^-1 (x) = 3/(x + 4),\ \ x in R\ text(\)\ {-4}`
The function `g: text{[−a, a]} -> R, \ g(x) = sin (2(x - pi/6))` has an inverse function.
The maximum possible value of `a` is
`A`
`text(If)\ \ y=sin x,\ \ text(the inverse function exists in)`
`text(the domain)\ \ \ -pi/2<= x <= pi/2`
`text(Find)\ x\ text(such that:)`
`2(x – pi/6) = +- pi/2`
`:. g^-1\ \ text(exists in the domain)\ \ [-pi/12, (5pi)/12]`
`text(S)text(ince the form of the domain is)\ \ [a,-a],`
`a = pi/12`
`=> A`